
International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1466
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

A Software Code Measures Based on Requirement Engineering Documents

Dr. Zainab Mohammed Hussein Dahlia Jasim Mohammed
Al-Mansour University College Iraqi Commission for Computers and Informatics
Software Engineering Department Informatics Institute for Postgraduate Studies
zainab_hussain2012@yahoo.com dahliajanabi@gmail.com

Abstract

Research shows that Metrics are used by the software industry to estimate the software
before creating it to impact the quality of the decision making earlier at the requirement stage,
quantify the development, operation, and maintenance of the software.
 In this paper a software code measures could be anticipated by the requirement measures
gathered from the requirement engineering documents. Ten case studies have been analyzed, data-
driven approach have been used to propose two mathematical models, one for requirement
metrics which is the Requirement Model (RM) and another one for code metrics which is the
Code Model (CM) based on the gathered and analyzed data from the tested systems. The results
proved that the RM and CM values are approximately equal based on the relative error
measurement and thus a method is gained for computing the code metrics in advanced phases of
the software life-cycle and hence time and effort are saved, the cost is decreased, and low wastage
is achieved.
Keywords: Requirement Engineering Documents, Requirement Metrics, Code Metrics.
1. Introduction

Measurement is the process of empirical, objective, assignment of numbers to
properties of objects or events of the real world in such a way as to describe them. Formally,
measurement is defined as a mapping from the empirical world to the formal, relational world.
Consequently, a measure is the number or symbol assigned to an entity by this mapping in order to
characterize an attribute [Kan04]. So metrics act as indicators that provide a quantitative feed-back
to software developers about various aspects of the software and pinpoint problem areas in their
systems [KKB08].

In an object-oriented environment, requirements are modeled as use-cases and they are
implemented as methods of various classes defined in the class diagram and used in the behavioral
diagrams. It is necessary to ensure that each and every requirement is addressed as use-case and
every event of the use-cases are implemented as methods of classes used in the behavioral
diagrams in a consistent manner [KKB08].

Estimation is the intelligent anticipation of the quantum of work that needs to be
performed and the resources (human resources, monetary resources, equipment resources, and
time resources) required to perform the work at a future date, in a defined environment, using
specified methods. Software estimation is assuming more importance as a natural consequence of
increased outsourcing of software development work. When any work is outsourced, it is
necessary to come to an agreement with the supplier of the price to be paid for the assigned work.
In an outsourcing scenario, software estimation is needed for the following reasons [Che09]:

1. To set a budget for the assignment.
2. To evaluate proposals received from different vendors for software development.
3. To reach an agreement with the selected supplier on the size of the software to be

developed and the fee for developing the agreed-upon size of the software.
 In this paper, a software code measures based on requirement engineering documents can be
estimated by using a proposed software measurement tool that provide two models: the proposed

http://www.ijser.org/
mailto:zainab_hussain2012@yahoo.com
mailto:dahliajanabi@gmail.com

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1467
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

CM (Code Model) and the proposed RM (Requirement Model). These two models are based on
the selected code and requirement metrics which are used to prove that it can be measure the code
metrics earlier in the requirement phase of the software life cycle using the requirement
documents.

2. Related Work

Ashish Sharma and D.S Kushawaha in 2010 [AK0501] proposed a complexity
measure based on requirement engineering document, the major issue in development of quality
software is precise estimation. Further this estimation depends upon the degree of intricacy
inherent in the software i.e. complexity. This paper attempts to empirically demonstrate the
proposed complexity which is based on IEEE Requirement Engineering document.

Ashish Sharma and Dharmender Singh Kushwaha in 2010 [AK0910] demonstrated
empirically that the complexity of the code can be determined based on its IEEE software
requirement specification document. Considering the shortcoming of code-based approaches, their
proposed approach is able to compute the complexity of yet-to-be-written software immediately
after freezing the requirement in the Software development Lifecycle (SDLC) process.

Luigi Lavazza and Gabriella Robiolo in 2010 [LR10] introduced the evaluation of
complexity in Functional size measurement based on a UML Approach, this paper show that
measurement-oriented UML modeling can support the measurement of both functional size and
functional complexity from UML models.

Kenneth Lind and Rogardt Heldal in 2010 [KR10] explained the reasons behind the
strong correlation between Functional Size Measure and Code Size Measure to obtain accurate
code size estimation results.

Ashish Sharma and Dharmender Singh Kushwaha in 2011 [SK11] proposed a test
metric for the estimation of the software testing effort using IEEE-Software Requirement
Specification (SRS) document in order to avoid budget overshoot, schedule escalation etc., at very
early stage of software development. Further the effort required to develop or test the software
will also depend on the complexity of the proposed software.

Ashish Sharma and Dharmender Singh Kushwaha in 2012 [SK12] present a
systematic and an integrated approach for the estimation of software development and testing
effort on the basis of improved requirement based complexity (IRBC) of the proposed software.

3. Requirement Engineering

Requirements engineering is a major software engineering action that begins during
the communication activity and continues into the modeling activity. Requirements engineering
builds a bridge to design and construction. The bridge could begin at the feet of the project
stakeholders (e.g., managers, customers, end users), where business need is defined, user scenarios
are described, functions and features are delineated, and project constraints are identified.
Requirements engineering provides the appropriate mechanism for understanding what the
customer wants, analyzing need, assessing feasibility, negotiating a reasonable solution,
specifying the solution unambiguously, validating the specification, and managing the
requirements as they are transformed into an operational system.

Requirement engineering document is a specification for a particular software product,
program or set of program that performs some certain functions for a specific environment
[SK0510]. The software requirements document (sometimes called the Software Requirements
Specification or SRS) is an official statement of what the system developers should implement. It
should include both the user requirements for a system and a detailed specification of the system

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1468
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

requirements. Sometimes, the user and system requirement are integrated into a single description.
In other cases, the user requirements are defined in an introduction to the system requirements
specification. If there are a large number of requirements, the detailed system requirements may
be presented as a separate document [Som11].

4. Unified Modeling Language

The UML is a general-purpose visual modeling language that is used to specify,
visualize construct and document the artifacts of a software system. The emergence of UML as an
industry standard for modeling system has encouraged the use of automated software tools that
facilitate the development process form analysis through coding. It provides several diagram types
that can be used to view and model the software system from different perspectives and/or at
different levels of abstraction [NT05]. As UML is not a methodology it is left to the user to follow
whatever processes they deem appropriate in order to generate the designs described by the
diagrams. UML does not constrain this; it merely allows those designs to be expressed in an easy
to use, but precise, graphical notation [Ken09].

4.1. UML Class Diagram

A class diagram is an abstraction for all the possible object diagrams that can be
describes the types of the objects in the system and the relationships that exist between them
[BS04]. A class is represented as a box with the name of the class inside, the name should always
be singular and start with a capital letter. Optionally, the class diagram may also show the
attributes and operations contained in each class. Figure (1) illustrates how a class can be drawn at
several different levels of detail[LL05].

 Figure (1) The Rectangle class at several levels of details

4.2. UML Sequence Diagram

The sequence diagrams describe how the system works over a period of time.
Sequence diagrams are ‘dynamic’ rather than ‘static’ representation of the system. They show the
sequence of method invocations within and between objects over a period of time. They are useful
for understanding how objects collaborate in a particular scenario as shown in the example in the
Figure (2) [Ken09]. There are three objects in this scenario. Time runs from top to bottom, and the
vertical dashed lines (lifelines) indicate the objects ‘continued existence through time. The logic of
a scenario often depends on selection (if) and iteration (loops). There is notation (interaction
frames) which allow ifs and loops to be represented in sequence diagrams however these tend to
make the diagrams cluttered. Sequence diagrams are generally best used for illustrating particular
cases, with the full refinement reserved for implementation code [Ken09].
4.3. Use Case Diagram

The use case diagram shows the relationship between actors and use cases. Use case
diagram explains about how the system is going to interact with the outside environment. The
components are: actor, use case, relationship, and package. Actor is someone or something that is

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1469
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

interacting with the system. Use cases are nothing but scenarios of the system. If the abstraction
level of the diagram is more enough as an estimation of the function point can be derived from it.
Different use cases must be consistent and describe the behavior of the system [RRR12]. An actor
symbol is rendered as a stick man, and a use-case as an ellipse. An interaction between an actor
and a use-case is presented as an unadorned line between the two as shown in Figure (3) [BS04].

Figure (2) a sequence diagram example

Figure (3) Community Bank Use Cases

5. Requirement Engineering Measurements

Technical work in software engineering begins with the creation of the requirements
model. It is at this stage that requirements are derived and a foundation for design is established.
Therefore, product metrics that provide insight into the quality of the analysis model are desirable.
Although relatively few analysis and specification metrics have appeared in the literature, it is
possible to adapt metrics that are often used for project estimation and apply them in this context.
These metrics examine the requirements model with the intent of predicting the “size” of the
resultant system. Size is sometimes (but not always) an indicator of design complexity and is

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1470
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

almost always an indicator of increased coding, integration, and testing effort [Pre10]. Some of
these metrics have been selected:
5.1 Use Case Points (UCP) metric

The use case points (UCP) method of software estimation was developed by Gustav
Karner of Objectory System (later Rational Software and now IBM) in 1993 [Kar93]. It was
developed for those software developers using Unified Modeling Language (UML) and Rational
Unified Process (RUP) for software engineering and development. Each use case is comprised of
actors. Each actor is classified into one of three levels based on complexity as shown in table (1)
and each use case falls into one of three classes based on complexity. Each of these three classes
categorizes use cases in one of two ways, either by number of transactions or by number of classes
as shown in table (2) [Che09].

Table (1) Weighted actor

Complexity Definition Weight
Simple A system interface 1

Average A protocol-driven interface 2
Complex A GUI 3

Table (2) Weighted use case

Complexity Definition Weight
Simple 1 to 3 transactions or 5 or fewer classes in the software 5

Average 4 to 7 transactions or 6 to 10 classes in the software 10
Complex 8 or more transactions or 11 or more classes in the software 15

 To get the Unadjusted Use Case Points (UUCP), the weights of the actors and the use cases
are summed together [Che09]:
𝐔𝐔𝐂𝐏 = ∑ 𝐧𝐢 ∗ 𝐖𝐢

𝟔
𝐢=𝟏 ……..…….. (1)

where nRiR is the number of items of variety i. WRi R is the weight of variety i. i=1 to 6 according to the
total types of the weighted use cases and actors. If there is no information about the
implementation project environment and the environment we can use the UUCP for the
estimation. Otherwise the UUCP would have to be adjusted to get a better estimation. Now the
UUCP are adjusted with two types of factors: Technical complexity factor (TCF) and
Environment complexity factor (ECF). Each of these factors shown in tables (3) and (4) are rated
from 0 to 5, where 0 means the factor is irrelevant and 5 means the factor is most important. Each
factor has a predetermined weight. The final value for each of the factors is the value obtained by
multiplying the assigned value by its predetermined weight. Computation of the technical factor
(TF) is shown in table (3) [Che09]:
𝐓𝐅 = ∑ 𝐓𝐢 ∗ 𝐖𝐢

𝟏𝟑
𝐢=𝟏 ..………… (2)

 where TRi Ris the factors contributing to complexity of variety i, i=1 to 13 according to the total
number of factors, (0.6) is a constant.
𝐓𝐂𝐅 = 𝟎.𝟔 + 𝐓𝐅/𝟏𝟎𝟎…..….. (3)
Table (4) shows the computation of the environmental factor (EF) such that [Che09]:
𝐄𝐅 = ∑ 𝐄𝐢 ∗ 𝐖𝐢

𝟖
𝐢=𝟏……………………….. (4)

𝐄𝐂𝐅 = 𝟏.𝟒 + (−𝟎.𝟎𝟑 ∗ 𝐄𝐅)…......................................……………. (5)
where ERi R is the factor contributing to efficiency of variety i, WRiR is the weight of variety i, (1.4) and
(-0.03) are constants. Now the use case points (UCP) is counted using the UUCP the unadjusted
use case points, TCF the technical factor, and the ECF the environmental factor [Che09]:
𝐔𝐂𝐏 = 𝐔𝐔𝐂𝐏 ∗ 𝐓𝐂𝐅 ∗ 𝐄𝐂𝐅 ….................................…………….....… (6)

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1471
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 Table (3) Factors contributing to complexity

Ti Factors Contributing to Complexity Wi
T1 Distributed systems 2
T2 Response time 1
T3 End user efficiency 1
T4 Complex internal processing 1
T5 Reusable code 1
T6 Easy to install 0.5
T7 Easy to use 0.5
T8 Portable 2
T9 Easy to change 1
T10 Concurrent 1
T11 Security features 1
T12 Access for third parties 1
T13 Special training 1

Table (4) Factors contributing to efficiency

Ei Factors contributing to efficiency Wi
E1 Familiarity with project model used 1.5
E2 Application Experience 0.5
E3 Object-oriented experience of the team 1
E4 Lead analyst capability 0.5
E5 Motivation of the team 1
E6 Stability of requirements 2
E7 Part-time staff -1
E8 Difficult programming language -1

5.2. Object Points (OP) metric
 The object points (OP) method is used in COCOMOII (Constructive Cost Model) [Coc] as the
size measure for a proposed software product. With the OP method, the software artifacts (screens,
reports, and 3GL components) are enumerated. Each of these objects is rated on a complexity
level as simple, medium, or difficult. The rules for classifying screens into different levels of
complexity are shown in table (5). “Server” indicates tables on the server. “Client” indicates tables
on the client machine. 3GL components have only one level of complexity, and that is the
“difficult” level. These objects are given a weight that depends on the complexity level, as shown
in table (6). Then all the objects are enumerated and summarized in a table, as shown in table (7)
[Che09].

Table (5) Complexity levels for screens
 Number and source of data tables

Number
of views contained

 Total <4
 (1 server,1 or 2 clients)

 Total between 4 and 8
 (2 or 3 servers, 3 to 5 clients)

 Total > 8
 (>3 servers,> 5 clients)

2 or less Simple Simple Medium
3 to 7 Simple Medium Difficult

8 or more Medium Difficult Difficult

 Table (6) Complexity levels for reports

 Number and source of data tables

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1472
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Number
of sections contained

Total <4
 (1 server,1 or 2 clients)

 Total between 4 and 8
(2 or 3 servers,
3 to 5 clients)

Total > 8
(>3 servers,
> 5 clients)

1 Simple Simple Medium
2 or 3 Simple Medium Difficult

4 or more Medium Difficult Difficult

 Table (7) Weights for objects

 Weight based on complexity level
Object Simple Medium Difficult
Screen 1 2 3
Report 2 5 8

3GL components NA NA 10

5.3. The COSMIC – FFP (FSM) Method
 COSMIC [Cos09] stands for the (Common Software Measurement International Consortium),
FFP stands for (Full Function Point) and FSM is the (Functional Size Measure). The purpose of
the COSMIC method is to provide a standardized method of measuring a functional size of
software from the functional domains commonly referred to as ‘business application’ software and
‘real-time’ software.
 This method is based on two phases. The COSMIC-FFP mapping phase takes as input the
specification of Functional User Requirements (FUR). This specification may be at different levels
of abstraction which generates the identification of different software layers as a result of a
functional partition of the system. Later the boundary is identified, which is defined as a
conceptual interface between the software under study and its users. The collection of FURs can
be decomposed into a set of functional processes. Each functional process is a unique, cohesive
and independently executable set of data movements, with data groups being defined as a distinct,
non empty, non ordered and non redundant set of data attributes. The measurement method does
not require identifying the data attributes. These might be identified if a sub-unit of measure is
required. The measurement phase begins with the identification of the data movements of each
functional process. A data movement, moves one or more data attributes than belong to one data
group. The four valid types of data movement are: entry, read, write and exit [FAP12].

• An entry moves a data group from a user across the boundary into the functional process
where it is required.

• A read moves a data group from persistent storage within reach of the functional process
that requires it.

• A write moves a data group from inside a functional process to persistent storage.
• An exit moves a data group from a functional process across the boundary to the user that

requires it.
 The objective of this phase is to produce a quantitative value based on the measurement
principle, which is established in COSMIC-FFP. The measurement function is applied to each
instance of a data movement by assigning a numerical quantity, 1 Cfsu (Cosmic Functional Size
Unit). Finally, the application of the aggregation function continues if the data movements of all
the functional processes have been measured. This way, the functional size of a functional process
is the sum of the functional sizes of individual data movements. Finally, the functional size of a
software layer is defined as the sum of the functional sizes of its respective functional processes.

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1473
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 The measurement phase aims to produce a quantitative value that represents the software
functional size. In order to do this, the data movement types are identified. Then, the measurement
function is applied and finally, the respective aggregation functions are found [FAP12].
Step 1.-Identification of the data movements:
 The four types of data movements (entry, read, write and exit) are identified basically in the
respective message types defined in the Sequence Diagrams of the OO-Method Requirements
Analysis Process (signal, query, service and connect). The relationship between the concepts of an
entry data movement type and a signal message with input value is trivial. Nevertheless, it is
necessary to indicate whether the data entry involves attributes of different data groups. Thus the
rules to identify one entry for each different data group are [FAP12]:
Rule 1: “Accept each message labeled with the stereotype <<signal>> and with the input value as
an ENTRY data movement”. For the identification of READ data movements, we consider all the
movements that recover attributes values pertaining to the same stored data group. The messages
with the stereotype <<query>> represent data movements since they imply read the state of
objects.
Rule2: “Accept each message labeled with the stereotype <<query>>as a READ data movement”.
The condition of a message represents a READ data movement because before execution, it
implies recovering the value of the attributes involved in the condition in order to evaluate it.
Rule 3: “Accept each condition for some message type as a READ data movement”. In the
specification of a use case, it is possible to associate a precondition. It indicates a condition that
must be satisfied before also the execution of the use case. In accordance with Rule 3, a
precondition is also a READ data movement as defined in the following rule:
Rule 4: “Accept each precondition defined in the specification of a use case as a READ data
movement”. The following rule is not specifically associated to a sequence diagram but rather to
the entire system since it is defined as a class property. This rule is considered as a complementary
rule to the identification of read data movements and should be evaluated after the execution of
any service in the quoted class.
Rule 5: “Accept each integrity constraint as a READ data movement”. A service message allows
us to create, destroy or update the state of objects. This message type implies a write data
movement, since there is a change of state in these persistent objects.
Rule 6: “Accept each messages labeled with the stereotypes <<service/new>>,
<<service/destroy>> or <<service/update>> as a WRITE data movement”. Since a message with
the stereotype <<connect>> implies the creation or destruction of a link between the objects of the
respective classes, this type of message is also considered as a write data movement.
Rule 7: “Accept all message labeled with the stereotype <<connect>>as a WRITE data
movement”. The relationship between an exit data movement and a signal message with output
value is trivial. Both concepts imply moving a data group from a functional process across the
boundary to the user that requires it.
Therefore, the proposed rule is as follows:
Rule 8: “Accept each message labeled with the stereotype <<signal>> and with the output value
as an EXIT data movement”.
Step 2.-Applying the measurement function:
 This step consists of applying the COSMIC-FFP measurement function to each data
movement identified in each functional process (use case). In the equation described below (7),
each instance of a data movement identified (entry, read, write and exit) receives a numerical size
of 1 Cfsu (Cosmic Functional Size Unit) [FAP12].
𝐟(𝐱) = 𝟏𝐂𝐟𝐬𝐮 …...…………………. (7)

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1474
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Step 3.-Aggregation function at the functional process level:
 This step consists of adding the results of the measurement function applied to all the data
movements identified in each functional process. The aggregation function at this level (use case)
is as follows [FAP12]:
Rule 9: “The functional size of a use case is equal to the sum of all data movements identified”.
However, two additional rules are defined due to the relationships that appear between use cases.
In order to measure the functional size of a use case extended by one or more secondary use cases,
the aggregation function is explained in the following rule:
Rule 10: “The functional size of a base use case extended by another secondary use case set is
equal to the sum of the functional sub-processes identified in each secondary use case plus the
functional sub-processes of the base use case”. In a similar way, in order to a relationship include
the functional size of a base use case is explained in the following rule:
Rule 11: “The functional size of a base use case that includes other secondary use cases is equal to
the sum of the functional sub-processes identified in each included use case plus the functional
sub-processes of the base use case”. These two rules are expressed in the equation [FAP12]:
𝐒𝐢𝐳𝐞 (𝐁𝐚𝐬𝐞_𝐔𝐬𝐞 𝐂𝐚𝐬𝐞) = � (𝐒𝐞𝐜𝐨𝐧𝐝𝐚𝐫𝐲_𝐔𝐬𝐞 𝐂𝐚𝐬𝐞𝐢) + 𝐒𝐢𝐳𝐞𝐏(𝐁𝐚𝐬𝐞_𝐔𝐬𝐞 𝐂𝐚𝐬𝐞)𝐧

𝐢=𝟏 …….........… (8)
 where i is the total number of use cases, p is the sub process.

Step 4.-Aggregation function at the software layer level:
 This step consists of adding the results of the measurement function applied to all primary use
case identified as functional processes in the software system delimited by the boundary. The
secondary use cases are not considered in this step because they are not externals interactions.
Therefore, the rule is as follows:
Rule 12: “The functional size of a software layer is equal to the sum of the functional sizes of all
the primary use case (functional processes)”. This rule is expressed in the following equation
[FAP12]:
𝐒𝐢𝐳𝐞 𝐋𝐚𝐲𝐞𝐫𝟏 = � 𝐒𝐢𝐳𝐞 (𝐏𝐫𝐢𝐦𝐚𝐫𝐲_𝐔𝐬𝐞 𝐂𝐚𝐬𝐞𝐢)

𝐧
𝐢=𝟏 ……................……….. (9)

 where i is the total number of the primary use cases

6. Code Metrics
The code metrics are used to measure the software product (source code), at the end of the
development stage (at the testing process), during design, and/or at the end of each deliverable.
There are many object oriented code metrics, some measure the class, the project, or the properties
of the object oriented (OO) concepts.
6.1. Chidamber and Kemerer (CK) metrics
Metric set proposed by Chidamber and Kemere [CK94], contains six object oriented design
metrics. Three metrics have been selected, these metrics are used to measure software size and/or
complexity, and they are listed as follows:
 A. Weighted Methods per Class (WMC)
 WMC relates directly to Bunge’s definition of complexity of a thing, since methods are
properties of object classes and complexity is determined by the cardinality of its set of properties.
The number of methods is, therefore, a measure of class definition as well as being attributes of a
class, since attributes correspond to properties.

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1475
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Consider a Class, with methods M1, …, Mn that are defined in the class. Let c1,…, cn be the
complexity of the methods. Then [Jam06]:
 𝐖𝐌𝐂 = ∑ 𝐜𝐢𝐧

𝐢=𝟏 ………..………… (10)

If all method complexities are considered to be unity, then WMC= n, the number of methods. This
metric is used to measure the complexity and size of each class in the project with the following
viewpoints [Jam06]:
The number of methods and the complexity of methods involved is a predictor of how much time
and effort is required to develop and maintain the class.
The larger the number of methods in a class the greater the potential impact on children, since
children will inherit all the methods defined in the class.
Classes with large numbers of methods are likely to be more application specific, limiting the
possibility of reuse.
B. Depth of Inheritance Tree (DIT)

DIT relates to Bunge’s notion of the scope of properties. DIT is a measure of how
many ancestor classes can potentially affect this class. Depth of inheritance of the class is the DIT
metric for the class. In cases involving multiple inheritances, the DIT will be the maximum length
form the node to the root of the tree. This metric can be used to measure the complexity and size
[Jam06].
6.2. Lorenz and Kidd (LK) Class Size (CS)

A class size can be measured in a number of different ways. This set of metrics is
proposed by Lorenz and Kidd [LK94]. These metrics deal with quantifying an individual class,
they are summed together to measure the class size (CS) [JS04]:
A. Number of Class Methods in a Class
 The number of methods available to the class and not its instance affects the size of
the class. The number should generally be relatively small compared to the number of instance
methods. The number of class methods can indicate the amount of commonalty being handled for
all instances. It can also indicate poor design if service better handled by individual instances are
handled by the class itself. As indication that this is occurring is an abundance of conditional logic
based on data values [JS04].
B. Number of Class Variables in a Class

Class variables are localized globals, providing common objects to all the instances of
a class. There are usually a relatively low number of class variables compared to instance
variables. The class variables are often used to provide customizable constant values that are used
to affect all the instances behavior. They might coordinate information across all instances, such
as the determination of a unique value for a transaction number [JS04].

7. Relative Error Measurement

Error measurement is a potential source of non-sampling bias in many surveys. It
occurs when the information to be obtained on one or more variables in the study is miss-
measured. This happens, for example, as a result of an imprecise or inaccurate data collection
instrument, complexities inherent to the variable being measured, and difficulties to the
respondent inform the true response properly. This source of error is potentially a concern for the
survey users because, if unaccounted for, it could affect the quality of the data collected and, as a
possible consequence, distort the inferences for the parameters of interest [SS12].
 Approximation error is the discrepancy between an exact value and some approximation to it.
An approximation error can occur because the measurement of the data is not precise due to the

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1476
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

instruments or approximations are used instead of the real data. One error measurement is
selected, that is the Relative error which accounts for the relative size of error. The relative error is
given by the difference between an experimentally determined or approximated value v1 and the
accepted value v2 divided by the accepted value and multiplied by 100% [GL96].
𝐑𝐞𝐥𝐚𝐭𝐢𝐯𝐞 𝐞𝐫𝐫𝐨𝐫 = |𝐯𝟏 − 𝐯𝟐|

𝐯𝟐
× 𝟏𝟎𝟎%.. (11)

8. Building Estimation Models
 A model can be built and used to estimate or predict the parameter of interest by using
the metric values that can be measured. Such models are generally process-specific as the property
of interest depends on the process. That is, if the process changes, the value of the property will
change even of the input values (i.e., the metrics that have been measured) are the same. A model
for the software process (or a part of it) can be represented as [Jal97]:
𝐲 = 𝐟(𝐱𝟏, 𝐱𝟐, … , 𝐱𝐧)…………...……………. (12)

 The dependent variable y is the metric of interest (e.g., the total effort, reliability, etc.). x1, x2,
…, xn are independent variables that typically represent some metric values that can be measured
when this model is to be applied. The function f is really the model itself that specifies how y
depends on these independent variables for the process. A model may be theoretical or data-
driven. In a theoretical model, the relationship between the dependent and independent variables is
determined by some existing relationships that are known. Such models are independent of data.
Data-driven models are generally the result of statistical analysis of the data collected about the
process from previous projects. In these models, one hypothesizes some model, whose actual
parameters are then determined through the analysis of data. Many of the process models used in
project management are data-driven. Collecting data for building such models is the major reason
for the termination analysis phase of the management process [Jal97].

9. The Proposed Software Measurement Tool

The proposed software measurement tool is used to measure code metrics based on
requirement engineering document by compute the proposed Requirement Model (RM) and the
proposed Code Model (CM). This software measurement tool analyzes the requirement documents
and the code of any tested software system to collect, analyzes, and save the required data that is
needed to compute the selected metrics.
 The proposed software measurement tool is capable of creating requirement documents for
any software system by using the proposed UML tool where the required data needed to compute
the selected requirement metrics are collected in the data-base automatically once the UML
diagrams have been created, and then the proposed RM is computed automatically. The code
metrics and the proposed CM are computed automatically just by selecting the project folder. The
CM and the code metrics are used for comparison and prove purpose.
9.1 Computing the Requirement Metrics

There exist a number of requirement metrics, but some of them are selected because
they concentrate on the object oriented size and complexity. The inputs of selected requirement
metrics are: the requirement document (required system features from the customer and developer
perspectives) and the UML diagrams created by using the UML Building tool provided by the
proposed software measurement tool. The requirement metrics are computed automatically by the
proposed system. One of the case studies is selected to demonstrate the computing process which
is the (Central Repository) case study.

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1477
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

9.1.1. Use Case Points (UCP) Metric
The complexity of the use-case diagrams is classified according to the number of use-

cases for each use-case diagram stored in the data-base. The actor’s complexity is classified
according to the actor type: a system interface, protocol driven, or GUI. Here the UUCP is
computed automatically once the diagrams are created. Figure (4) describes the way of specifying
the scales for the technical and the environmental factors from the GUI of the proposed software
measurement tool. The scale starts from zero to five based on the customer desired features and
the developer perspective of the system under construction. The scale are (none:0, very low:1,
low:2, normal:3, high:4, very high:5) or (none:0, bad:1, fine:2, good:3, verygood:4, excellent:5)
according to the factors. Then the Use Case Points (UCP) is computed automatically based on
equation (6).

Figure (4) Calculate UCP Flowchart

a. Computing UUCP: The central repository case study has two use-case diagrams according to

two actors (administrator and user) who communicate with the system via a GUI interface as
shown in figures (5) and (6) respectively, such that the actors are considered complex, each
one would be on weight 3. The use-case diagram in figure (5) has five transactions (use-cases),
that makes it average of weight 10, and the second use-case diagram in figure (6) has one
transaction (use-cases), that would make it simple of weight 5, and according to equation (1),
UUCP = (2×3) + (1×10) + (1×5) =21.

b. b. Computing the Technical Factor: The Technical Factor (TF) is computed by multiplying
the Wi by a scale that is specified according to the tested system functionality which is
determined by the software developer to estimate the system at the requirement stage, such
that for the Central Repository case study, the Wi and a scale for each factor are specified as
shown in table (8) along with the reasons behind selecting each scale. By using this table, the
TF and TCF are computed according to equations (2) and (3) as follows:
TF= (2×0) + (1×4) + (1×3) + (1×3) + (1×4) + (0.5×3) + (0.5×4) + (2×3) + (1×4) + (1×2) +
(1×4) + (1×2) + (1×4) = 39.5
TCF = 0.6 + 39.5/100 = 0.995

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1478
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

c. Computing the Environmental Factor: The Environmental Factor (EF) is computed by
multiplying the Wi for each factor by a scale that is specified according to the tested system
functionality provided by the software developer to estimate the system at the requirement stage,
such that for the Central Repository case study, the Wi and a scale for each factor can be selected
as shown in table (9) and from this table, the EF and ECF are computed according to equations (4)
and (5).
EF = (1.5×3) + (0.5×4) + (1×5) + (0.5×3) + (1×3) + (2×2) + (-1×3) + (-1×3) = 14
ECF = (1.4) + (-0.03×14) = 0.98

Figure (5) Use case diagram (Administrator responsibilities)

Figure (6) Use-case diagram (User responsibilities)

 Table (8) TCF computation for the (Central Repository) case study

Ti Factors Contributing to Complexity Wi Scales Reasons
T1 Distributed systems 2 0 Installed on a stand-alone PC
T2 Response time 1 4 The data-base is stored on the same PC
T3 End user efficiency 1 3 The user experience with computer systems is average
T4 Complex internal processing 1 3 The system functions complexity levels are average
T5 Reusable code 1 4 The programmer used an object-oriented approach
T6 Easy to install 0.5 3 External data-base connection must be installed first before installi

the system
T7 Easy to use 0.5 4 User friendly GUI

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1479
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

T8 Portable 2 3 Can be installed on one platform (windows) with different versio
T9 Easy to change 1 4 Programmed with an OO approach that makes it easy to change.
T10 Concurrent 1 2 It’s a stand-alone PC application not a network application
T11 Security features 1 4 The system is protected by a hardware device (USB flash)
T12 Access for third parties 1 2 It’s a stand-alone PC application
T13 Special training 1 4 Staff training is required

 Table (9) ECF computation for the (Central Repository) case study

Ei Factors contributing to efficiency Wi Scales Reasons
E1 Familiarity with project model used 1.5 3 New requirement for software development
E2 Application Experience 0.5 4 Based on the software developer experience
E3 Object-oriented experience of the team 1 5 Based on the software developers team experience
E4 Lead analyst capability 0.5 3 Based on the experience of the system analyst
E5 Motivation of the team 1 3 Depends on the payment
E6 Stability of requirements 2 2 Customer changing demands
E7 Part-time staff -1 3 The team worked at the same period of time
E8 Difficult programming language -1 3 Depends on the programming language difficulty

d. Computing the Use Case Points: The UCP (Use Case Points) is computed according to
equation (6) by multiplying the UUCP, TCF, and ECF together as follows:
UCP= 21 × 0.995 × 0.98 = 20.4771

9.1.2. Object Points (OP) Metric
 The Proposed Snap shooting the User Interface tool is used to count the OP metric
automatically once the snap-shooting process is finished along with selecting the type of each
screenshot (screen, report, and 3GL components) and the number and source of data tables. The
Central Repository case study is chosen to demonstrate the OP metric, this system is installed on
one PC; this would specify the complexity level for the screens and reports as explained below:

a. Specifying Complexity Levels for Screens: The complexity level for the screens is

determined according to tables (5) and (7) by specifying the number and source of data tables.
The Central Repository system is listed in (3 to 7) number of views contained, and the system
contains nine screens and their complexity level is as follows:

Three simple screens; their weight equals (1) hence the number and source of data tables (total
>4). Figure (7) shows one of the simple screens for the Central Repository case study from the
proposed software measurement tool GUI. Three medium screens; their weight equals (2) hence
the number and source of data tables (total between 4 and 8). Figure (8) shows one of the medium
screens for the Central Repository case study from the GUI of the proposed software measurement
tool. Three difficult screens; their weight equals (3) hence the number and source of data table
(total>8). Figure (9) shows one of the difficult screens for the Central Repository case study from
the GUI of the proposed software tool.
b. Specifying Complexity Levels for Reports : The case study contains three difficult reports,
their weight equals (8) hence the number of sections contained is (2 – 3) and the number and
source of data tables (total>8). The complexity level for the reports is specified according to tables
(6) and (7). Figure (10) shows one of the reports for the Central Repository case study from the
proposed software measurement tool GUI.

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1480
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

c. Specifying the 3GL Components: The 3GL components are special screens that are used by
the system administrators to control the data architecture of the system, the data bases, and the
interfaces. The complexity level of the 3GL components is considered difficult always. There is
only one 3GL component such that the complexity level is difficult. Figure (11) shows the 3GL
component for the Central Repository case study.
d. Compute OP: Finally, the OP is calculated by classifying each object according to the
complexity level, then multiplying the total number of each object by its complexity level, and
then sum the total for all the objects and their complexities as illustrated in table (10).

 Table (10) the OP count for the Central Repository Case Study

Object Simple Medium Difficult Total
Screens 3 (screens) ×1 4 (screens) ×2 2 (screens) ×3 17
Reports 0 (reports) ×2 0 (reports) ×5 3 (reports) ×8 24

3GL components 1 (3GL) ×10 10
Total OP 51

Figure (7) GUI Screen of the Central Repository Case Study (simple)

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1481
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Figure (8) GUI Screen of the Central Repository Case Study (medium)

Figure (9) GUI Screen of the Central Repository Case Study (difficult)

Figure (10) GUI Report of the Central Repository Case Study (difficult)

Figure (11) 3GL Component of the Central Repository Case Study

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1482
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

9.1.3. Functional Size Measure (FSM)
The computation of the FSM depends on the UML sequence diagram. According to

equation (7), each data movement is (entry, exit, read, and write) is identified, would increases the
Cfsu by one while the acknowledgments are neglected because they are not considered as data
movements. All the sequence diagrams for the system are measured and according to equations (8)
and (9) the FSM is the sum of the data movements of all the sequence diagrams for the system.
For the Central Repository case study, there are three sequence diagrams illustrated in figures
(12), (13), and (14). It can be seen from figure (12) that there are five data movements, such that
FSM = 5 Cfsu. From the second sequence diagram shown in figure (13), it can be seen that there
are seven data movements, such that FSM = 7 Cfsu. Finally there are seven data movements for
the third sequence diagram shown in figure (14) such that FSM = 3 Cfsu. All the
acknowledgements in all the sequence diagrams are neglected. According to equation (10), the
final FSM = 5 + 7 + 3 = 15.

Figure (12) Requesting a material sequence diagram for the Central Repository Case Study

Figure (13) Creating a contract sequence diagram for the Central Repository Case Study

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1483
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Figure (14) Creating a report sequence diagram for the Central Repository Case Study

9.2 The Code Measuring
 This part of the proposed software measurement tool is responsible for comparison
and proving purposes. The source code of the tested system is entered by selecting the (Java, C#,
or VB) project folder or as a text file straight from their stored location. The proposed software
measurement tool stores the source code of the tested system for documentation. The steps to
measure the code metrics are as follows:
a. Brows the PC to choose the project folder: The tested system’s source code files are
automatically combined together in one list and the next operations are preformed sequentially.
Figure (15) shows the browsing process to select the targeted system from its stored location.
b. Remove Comment lines: The comment lines are not part of the measurement process so
the remaining lines are the pure source code. The total lines of code are counted automatically to
show the size of the system after and before removing the comment lines. The comments in most
of the programming languages are either (// comment line), (/* comment lines */) in JAVA and
C#, or (‘ comment) in Visual Basic and the process of deleting the comment lines are shown in
figure (16).

Figure (15) Open Project Folder Flowchart from the Proposed Software Measurement Tool

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1484
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Figure (16) Remove Comment Lines Flowchart

c. Compute the Weighted Method per Class (WMC) metric : There are several methods to
measure the complexity of a class. Based on equation (10), the WMC metric is programmed using
the following proposed method: wherever a decision exists such as loops, conditional statement,
switch statements, compound conditions, method calls (methods that are constructed by the
programmer only), are encountered; then the DE (Decision Count) is increased by one such that:
𝐌𝐞𝐭𝐡𝐨𝐝 𝐂𝐨𝐦𝐩𝐥𝐞𝐱𝐢𝐭𝐲 = 𝐃𝐄+ 𝟏 ... (13)

Figure (17) shows the flowchart for computing the WMC metric. Figure (18) shows the keyword
count algorithm where the tested system source code is read line by line to search for certain
keywords {if, for, while, goto, swith, &&, ||, foreach, do}. To compute the total number of method
calls, a second method have been developed to store the function names in a list as shown in figure
(19), then another method is created to look for the function calls in the tested system source code
line by line as shown in figure (20). Figure (21) shows a method segment in the (Central
Repository) case study which is programmed with C#, from this figure it can be seen that there
are: one (IF) Statement, two call methods for the method GetFiles, each one increases the DE by
1; the method complexity for this method equals four.
d. Compute the Depth of Inheritance Tree (DIT) metric: The DIT metric focuses on the
class levels in the class inheritance hierarchy, the root of the tree is considered level zero (DIT),
and the level is increased when every node is encountered until the leaves are reached at the end of
the inheritance tree, the leaves are in the highest level of the tree and this level represents the DIT
metric. The DIT is a measure for both size and complexity. The DIT is programmed as show in
figure (22), whenever a class inherits form another class, its father class is checked to see if it also
inherits from another class, a counter starts form 0 that is increases by one whenever class
inheritance is encountered, The DIT is performed for each class in the tested system. Figure (23)
shows the class diagram for the (Central Repository) Case study, The father class is (form1), that
makes it level 0, the class (R_Data_Structures) inherits from class (form1), so it’s level 1, and
class (access_2007_db_connection) inherits from class (R_Data_Structures) and that’s makes it
level 2.

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1485
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Figure (17) Compute WMC Flowchart

Figure (18) Keyword Count Algorithm

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1486
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Figure (19) Build a List of Function Names Algorithm

Figure (20) Computing Functions Calls Algorithm

public void Full_Path_Array(string From_This_Directoty, bool true_to_get_everything)
 {
 try
 {
 if (true_to_get_everything)
 {
 filePaths = Directory.GetFiles(From_This_Directoty,
"*.txt",searchOption.AllDirectories);
 }
 else
 {
filePaths=Directory.GetFiles(From_This_Directoty,"*.txt",SearchOption.TopDirectoryOnly);
 }
 }
 catch { }
 }

Figure (21) a method from the (Central Repository) Case study

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1487
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Figure (22) Compute DIT Flowchart

Figure (23) Leveled Class Diagram for the (Central Repository) Case Study from the
Proposed Software Measurement Software tool

e. Computing the Class Size (CS) metric: The class size is the total number of the methods and
attributes of each class, figure (24) shows the flowchart for computing the CS metric. A custom
made algorithm works like a compiler to distinguish the attributes and methods built by the
software developer of the tested system by transforming the source lines of code into string, then
searches for attributes and functions based on the programming language structure to determine
either the line is an attribute or function. Figure (25) shows a class within the (Central Repository)
case study, which contains four attributes which are: OleDbConnection, OleDbDataAdapter,
OleDbCommand, DataSet. And five methods which are: access2007_db_connection(string
dbpath), access2007_db_connection(string dbpath, string user_id, string password),
access2007_db_connection(string dbpath, string password), excute_sql(string sql_command),
full_dataset(string sql_query). The CS is the total number of attributes and methods, so CS here is

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1488
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

equal to nine. Figure (26) shows the code measures of the Central Repository case study from the
GUI of the proposed software measurement tool.

Figure (24) Compute CS Flowchart

 public class access2007_db_connection : R_Data_Structures
 {
 public OleDbConnection db_conn;
 public OleDbDataAdapter d_adapter;
 public OleDbCommand comand;
 public DataSet ds;

 public access2007_db_connection(string dbpath)
 { ... }
 public access2007_db_connection(string dbpath, string user_id, string password)
 { ... }
 public access2007_db_connection(string dbpath, string password)
 { ... }
 public void excute_sql(string sql_command)
 { ... }
 public void full_dataset(string sql_query)
 { ... }
 }

Figure (25) a class from the (Central Repository) case study

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1489
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Figure (26) the Code Measures of the Central Repository Case Study from the GUI of the

Proposed Software Measurement Tool

9.3 Requirement Model (RM) and Code Model (CM)
 Ten case studies have been collected and analyzed by using the selected code and requirement
metrics. These metrics focus on the size and complexity concepts, for example, table (11)
illustrates the final requirement metrics extracted from the requirement engineering documents for
the Central Repository Case Study.
 Table (11) Requirement Measures for the Central Repository Case Study

Requirement Metric Value
UCP 20.4771
OP 51

FSM 15

The results have been gathered so it would be possible to simply aggregate the
requirement metrics that are measured straight from the Object-Oriented system requirement
engineering documents and according to the requirement metrics results. A mathematical model is
proposed based on the concept of building an estimation model equation (12), this model is named
the RM (Requirement Model) which its equation can be used to estimate the code measures based
on requirements engineering documents.

𝐑𝐌 = 𝐔𝐂𝐏 + 𝐅𝐒𝐌 + 𝐎𝐏.. (14)
 Where UCP is the Use Case Points metric, FSM is the Functional Size Measure metric,
and OP is the Object Points metric
 Based on the proposed equation (14) RM for the Central Repository case study is as follows:
RM = 20.4771 + 15 + 51 = 86.4771
 To find and prove the RM model, the proposed CM (Code Model) is proposed using the
selected code metric that are calculated for each class in every system. For example table (12)
shows the final code metrics for the Central Repository Case Study. The CM (Code Model)
equation is:

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1490
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

𝐂𝐌 = ∑ 𝐖𝐌𝐂𝐧
𝐢=𝟏 + ∑ 𝐃𝐈𝐓𝐧

𝐢=𝟏 + ∑ 𝐂𝐒𝐧
𝐢=𝟏

𝐧
 ………….....................…………. (15)

 where WMC is the Weighted Method per Class metric, DIT is the Depth of Inheritance Tree
metric, CS is the Class Size metric, and n is the number of classes.
 Based on the proposed equation (14) the CM for the Central Repository case study is as
follows:

CM =
188 + 2 + 77

3 = 89
Table (12) Code Measures for the Central Repository Case Study

Code Metric Value
WMC 188
DIT 2
CS 77

no. of classes 3

 It can be seen that the RM ≅ CM and according to equation (11) the relative error between
the RM and CM is computed as follows:
Relative Error = |89−86.4771|

89
 × 100% = 0.0283%

 So the relative error is very low, such that the proposed RM which is derived from the
requirement engineering documents can be used to estimate the code metrics.

10 Results and Discussion

Ten case studies have been analyzed; the requirement metrics for all the case studies
are shown in table (13). The final results for computing the proposed RM and the Proposed CM
are shown in table (14), and the code metrics for the case studies are listed from in table (15-24) in
the appendix. it can be seen that by measuring the relative error according to equation (11) for
each case study and calculating the average of the ten case studies, the error value is insignificant
and the relation is proved to be approximately linear between the proposed CM and RM formulas,
and thus the CM could be estimated from the RM.
Figure (27) shows the scatter diagram for all the ten tested case studies, the labeled numbers on
the diagram represent the number of the case study, where each case study has a set of its own
(RM,CM) point. This figure shows the linear relationship between the RM and CM. This indicates
that the ability to estimate the code metrics based on the proposed RM that is extracted from the
requirement engineering document.
 The system developers would benefit the most form anticipating the code measures at the
requirement phase, hence they would be able to obtain the size and complexity measures of the
source code in advance. By using the proposed software measurement tool, the programmers
would have the privilege to anticipated the source code measure in advance, document the system
by using the UML documentation and drawing tools and thus the customers would have a
complete view of the system under construction along with its functionality.

11. Conclusions

1. The proposed software measurement tool enables the user to create requirement
engineering documents by using the proposed UML tools to generate (use- case
diagrams, sequence diagrams, and class diagrams). Then extracts the required
information from these documents to compute the requirement metrics
automatically.

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1491
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

2. It is possible to predict the CM (Code Model) from the RM (Requirement Model)
that are extracted from the requirement engineering document during the first
stage in the software life-cycle which is the requirement phase.

3. By measuring the code metrics based on requirement engineering documents, the
software programmers would have a complete picture of what the system would
be before the coding process; that would help them to work with no ambiguity.

4. Another benefits gained from measuring the code metrics at early stages of
software development are saving time and reducing cost hence the system is fully
understood and estimated earlier in the requirement phase.

5. The errors could be reduced where the system is anticipated at the requirement
phase.

6. The proposed software measurement tool is capable of computing the code
metrics (WMC, DIT, and CS) of a tested system source code in order to determine
complexity and size of that system.

7. The proposed system stores the requirement information and the code measures in
a data-base so all the tested systems are fully documented.

8. The proposed Requirement Model (RM) and Code Model (CM) have been
computed for all the case studies, the results showed that the RM and CM are
approximately equal and the relative error between the two models is
insignificant, so it is proved that the proposed RM is capable of estimating the
CM at the requirement phase of the software life-cycle.

Table (13) the Requirement Metrics for the Ten Case Studies

Case Study UCP OP FSM Number of requiremen
Classes

Materialized View 20.5205 55 18 3
Al-Ibdaá for car spare parts 16.641 31 10 12

Electronic Signature 43.3895 28 25 3
Wav Visualizer 16.3438 19 8 8

Central Repository 20.4771 51 15 3
Image Finder 7.3232 20 5 2

Almasal 18.5535 44 3 5
Engineering Time, Cost Estimation 11.9414 65 3 7

ToDo List 10.8173 13 4 2
Group Paint 7.777 10 3 2

 Table (14) The Results of the case studies and the Error Measurement

No. Case Study RM CM Relative error
1 Materialized View 93.5205 114 0.1796%

2 Al-Ibdaá for cars spear parts 57.641 67 0.1396%

3 Electronic Signature 96.3895 93 0.0364%

4 Wav Visualizer 43.3438 53 0.1821%

5 Central Repository 86.4771 89 0.0283%

6 Image Finder 32.3232 41 0.2116%

7 Almassal 65.5535 65 0.0085%

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1492
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

8 Engineering time, Cost estimation 79.9414 91 0.1215%

9 ToDo List 27.8173 25 0.1126%

10 Group Paint 20.77 21 0.0109%

Average 60.3777 65.9 65.9

Figure (27) the Scatter Diagram for all the case studies

12 References
[BS04] K.Barclay and J. Savage, “Object-Oriented Design with UML and Java”, Elsevier, 2004.
[Che09] Murali Chemuturi, “Software Estimation Best Practice, Tools & Techniques, A
complete Guide for Software Project Estimators”, J. Ross, 2009.
[CK94] Shyam R. Chidamber and Chris F. Kemerer, “A Metrics Suite for Object Oriented Design”,
IEEE Transactions on Software Engineering, Vol. 20, NO. 6, 1994.
[Coc] “COCOMO II Model Definition Manual”, version 1.4, University of Southern California.
[Cos09] “The COSMIC Functional Size Measurement Method”, Measurement Manual v 3.0.1, 2009.
[FAP12] Nelly Condori-Fernandez, Silvia Abrahao, and Oscar Pastor, “Towards a Functional Size
Measure for Object-Oriented Systems from Requirements Specification”, IEEE, 2012.
[GL96] Gene H. Golub, and Charles F. Van Loan, “Matrix Computations”, Johns Hopkins Studies
in Mathematical Sciences, 3rd Edition, 1996.
 [Jal97] Pankaj Jalote, “An Integrated Approach to Software Engineering”, second edition, Springer,
1997.
[Jam06] Seyyed Mohsen Jamali, “Object Oriented Metrics (A Survey Approach)”, 2006.

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1493
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

[JS04] Jubair J. Al-Ja’afer and Khair Eddin M. Sabri, “Chidamber-Kemerer (CK) and Lorenz and
Kidd (LK) Metrics to Assess Java Programs”, 2004.
[Kan04] Cem Kaner, “Software Engineering Metrics: What Do We Measure and How Do We
Know”, IEEE, 10th International Software Metrics Symposium, 2004.
[Ken09] Simon Kendal, “Object-Oriented Programming Using Java”, Ventus Publising Aps, 2009.
[Kar93] Gustav Karner, “Resource Estimation for Objectory Projects”, 1993.
 [KKB08] Ananya Kankilal, Goutam Kanjilal, and Swapan Bhattacharya, “Metrics-based Analysis
of Requirements for Object-Oriented Systems: An Emperical Approach”, 2008.
[KR10] Linda Kenneth and Helda Rogardt, “On the Relationship between Functional Size and
Software Code Size”, ACM, 2010.
[LK94] Mark Lorenz and Jeff Kidd, “Object-Oriented Software Metrics”, PTR Prentice Hall, 1994.
[LL05] Timothy C. Lethbridge and Robert Laganiere, “Object-Oriented Software Engineering
Practical Software Development Using UML and Java”, 2nd Edition, Mc Graw Hill, 2005.
[LR10] Luigi Lavazza and Gabriella Robiolo, “Introducing the Evaluation of Complexity in
Functional Size Measurement: a UML-based Approach”, ACM, 2010.
 [NT05] Iftikhar Azim Niaz and Jiro Tanaka, “An Object-Oriented Approach to Generate Java Code
from UML Statecharts”, International Journal of Computer & Information Science, Vol.6, No.2, June
2005.
[Pre10] Roger S. Pressman, “Software Engineering, A Practitioner’s Approach”, Seventh edition,
McGraw-Hill Companies, 2010.
[RRR12] Dr.GSVP Raju, K.Koteswara Rao, and M Sumender Roy, “A Case Study Approach to
Measure the Function Points from the Points of Relationships of UML”, International Journal of
Computer Applications, Volume 10, No. 10, 2012.
 [SK0510] Ashish Sharma and D.S. Kushwaha, “A Complexity Measure Based on Requirement
Engineering Document”, journal of computer science and engineering, volume 1, issue 1, May 2010.
[SK11] Ashish Sharma and Dharmender Singh Kushwaha, “A Metric Suite for Early Estimation of
Software Testing Effort Using Requirement Engineering Document and its Validation”, International
Conference of Computer & Communication Technology (ICCCT) 2011.
[SS12] Dami˜ao N. da Silva and Chris Skinner, “Adjusting for Survey Measurement Error with
Accuracy Variables”, JSM, 2012

Appendix

Table (15) Code metrics for the Materialized View Case Study
Class Name DIT WMC CS

Form1 0 160 23
Acess2007_db_connection 1 7 9

R_Data_Structures 1 105 37
Total 2 272 69

Table (16) Code metrics for Al_Ibda’a for Car Spare Parts Case Study

Class Name DIT WMC CS
billform 0 51 16

billsrecords 0 109 32
brand 0 16 0

carbrand 0 16 7
customers 0 59 20

customer_list 0 11 5
form1 0 30 15
items 0 111 27

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1494
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

printing 0 17 8
qq 0 31 11

reseat_bill 0 26 9
storage 0 145 36
Total 0 622 186

Table (17) Code metrics for the Electronic Signature Case Study
Class Name DIT WMC CS
WebCam 1 12 8

R_Data_Structures 1 105 37
Ramy_Protocol 2 87 28

Total 4 204 73

Table (18) Code metrics for Wav Visualizer Case Study
Class Name DIT WMC CS
AudioFrame 0 17 11
FifoStream 0 28 18

R_Data_Structures 2 105 37
WaveInBuffer 2 14 15

WaveInRecorder 2 28 16
WaveOutBuffer 4 14 15
WaveOutPlayer 4 26 16

Total 14 232 128

Table (19) Code metrics for Central Repository Case Study
Class Name DIT WMC CS

Form1 0 76 31
access2007_db_connection 1 7 9

R_Data_Structures 1 105 37
Total 2 188 77

Table (20) Code metrics for Image Finder Case Study

Class Name DIT WMC CS
Form1 0 43 13
login 0 20 6
Total 0 63 19

Table (21) Code metrics for Almasal Case Study

Class Name DIT WMC CS
Form1 0 92 38
Form2 0 41 19
Form3 0 56 22
Form4 0 29 14
Form5 0 13 5
Total 0 231 98

Table (22) Code metrics for Engineering Time, Cost Estimation Case Study

Class Name DIT WMC CS
Form1 0 233 75

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1495
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

MyListBoxItem 1 1 2
Form2 0 103 33
Form3 0 259 89
Form4 0 10 4
Form5 0 20 9
Form6 0 12 4
Total 1 638 216

Table (23) Code metrics for ToDo List Case Study
Class Name DIT WMC CS

Form1 0 28 9
Form2 0 9 4
Total 0 37 13

Table (24) Code metrics for Group Paint Case Study

Class Name DIT WMC CS
Program 0 1 1

ramy 0 9 4
Total 0 30 10

 المستخلص
تستخدم المقاييس من قبل صناع البرمجيات لتقييم جودة الأنظمة البرمجية قبل خلقها ولذلك تأثير كبير على جودة إتخاذ

المتطلبات، تقييم عمليات تطوير، تشيغل وصيانة النظام البرمجي. تعلمنا المقاييس بحالة القرارات في مرحلة متقدمة خلال جمع
 النظام وخصائصه وتساعدنا في تقييم النظام بطريقة موضوعية.

التنبؤ بمقاييس الشفرة البرمجيةبإستخدام مقاييس المتطلبات التي جمعت من وثائق هندسة في هذا البحث تمكنا من
تم تحليل عشرة حالات دراسة وكذلك فرض نموذجين رياضيين احدهما لمقاييس المتطلبات البرمجية وهو نموذج قد .المتطلبات

المتطلبات والآخر لمقاييس الشفرة البرمجية وهو نموذج الشفرة البرمجية اعتماداً على جمع وتحليل البيانات للأنظمة المفحوصة.
ستخدام أداة القياس البرمجية المقترحة، تتكون هذه الأداة من جزئين: أداة لغة التصاميم تتم عملية جمع هذه البيانات أوتوماتيكياً بإ

 الموحدة وأداة مقاييس الشفرة البرمجية.
بإستخدام مقياس الخطأ النسبي لهاتين ا تقارب قيم نموذج المتطلبات ونموذج الشفرة البرمجية وذلك تم اثباته اثبتتالنتائج

طريقة لحساب مقاييس الشفرة البرمجية في المراحل المتقدمة من دورة الحياة البرمجية وبذلك تم تقليل القيمتين ونتج ذلك عن
 الوقت والجهد والتكلفة والضياع.

http://www.ijser.org/

