International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1466
ISSN 2229-5518

A Software Code Measures Based on Requirement Engineering Documents

Dr. Zainab Mohammed Hussein Dahlia Jasim Mohammed

Al-Mansour University College Iraqi Commission for Computers and Informatics
Software Engineering Department Informatics Institute for Postgraduate Studies
zainab_hussain2012@yahoo.com dahliajanabi@gmail.com

Abstract

Research shows that Metrics are used by the software industry to estimate the software
before creating it to impact the quality of the decision making earlier at the requirement stage,
quantify the development, operation, and maintenance of the software.

In this paper a software code measures could be anticipated by the requirement measures
gathered from the requirement engineering documents. Ten case studies have been analyzed, data-
driven approach have been used to propose two mathematical models, one for requirement
metrics which is the Requirement Model (RM) and another one for code metrics which is the
Code Model (CM) based on the gathered and analyzed data from the tested systems. The results
proved that the RM and CM values are approximately equal based on the relative error
measurement and thus a method is gained for computing the code metrics in advanced phases of
the software life-cycle and hence time and effort are saved, the cost is decreased, and low wastage
IS achieved.

Keywords: Requirement Engineering Documents, Requirement Metrics, Code Metrics.
1. Introduction

Measurement is the process of empirical, objective, assignment of numbers to
properties of objects or events of the real world in such a way as to describe them. Formally,
measurement is defined as a mapping from the empirical world to the formal, relational world.
Consequently, a measure is the number or symbol assigned to an entity by this mapping in order to
characterize an attribute [Kan04]. So metrics act as indicators that provide a quantitative feed-back
to software developers about various aspects of the software and pinpoint problem areas in their
systems [KKBO08].

In an object-oriented environment, requirements are modeled as use-cases and they are
implemented as methods of various classes defined in the class diagram and used in the behavioral
diagrams. It is necessary to ensure that each and every requirement is addressed as use-case and
every event of the use-cases are implemented as methods of classes used in the behavioral
diagrams in a consistent manner [KKBO08].

Estimation is the intelligent anticipation of the quantum of work that needs to be
performed and the resources (human resources, monetary resources, equipment resources, and
time resources) required to perform the work at a future date, in a defined environment, using
specified methods. Software estimation is assuming more importance as a natural consequence of
increased outsourcing of software development work. When any work is outsourced, it is
necessary to come to an agreement with the supplier of the price to be paid for the assigned work.
In an outsourcing scenario, software estimation is needed for the following reasons [Che09]:

1. To set a budget for the assignment.

2. To evaluate proposals received from different vendors for software development.

3. To reach an agreement with the selected supplier on the size of the software to be
developed and the fee for developing the agreed-upon size of the software.

In this paper, a software code measures based on requirement engineering documents can be
estimated by using a proposed software measurement tool that provide two models: the proposed

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/
mailto:zainab_hussain2012@yahoo.com
mailto:dahliajanabi@gmail.com

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1467
ISSN 2229-5518

CM (Code Model) and the proposed RM (Requirement Model). These two models are based on
the selected code and requirement metrics which are used to prove that it can be measure the code
metrics earlier in the requirement phase of the software life cycle using the requirement
documents.

2. Related Work

Ashish Sharma and D.S Kushawaha in 2010 [AKO0501] proposed a complexity
measure based on requirement engineering document, the major issue in development of quality
software is precise estimation. Further this estimation depends upon the degree of intricacy
inherent in the software i.e. complexity. This paper attempts to empirically demonstrate the
proposed complexity which is based on IEEE Requirement Engineering document.

Ashish Sharma and Dharmender Singh Kushwaha in 2010 [AK0910] demonstrated
empirically that the complexity of the code can be determined based on its IEEE software
requirement specification document. Considering the shortcoming of code-based approaches, their
proposed approach is able to compute the complexity of yet-to-be-written software immediately
after freezing the requirement in the Software development Lifecycle (SDLC) process.

Luigi Lavazza and Gabriella Robiolo in 2010 [LR10] introduced the evaluation of
complexity in Functional size measurement based on a UML Approach, this paper show that
measurement-oriented UML modeling can support the measurement of both functional size and
functional complexity from UML models.

Kenneth Lind and Rogardt Heldal in 2010 [KR10] explained the reasons behind the
strong correlation between Functional Size Measure and Code Size Measure to obtain accurate
code size estimation results.

Ashish Sharma and Dharmender Singh Kushwaha in 2011 [SK11] proposed a test
metric for the estimation of the software testing effort using IEEE-Software Requirement
Specification (SRS) document in order to avoid budget overshoot, schedule escalation etc., at very
early stage of software development. Further the effort required to develop or test the software
will also depend on the complexity of the proposed software.

Ashish Sharma and Dharmender Singh Kushwaha in 2012 [SK12] present a
systematic and an integrated approach for the estimation of software development and testing
effort on the basis of improved requirement based complexity (IRBC) of the proposed software.

3. Requirement Engineering

Requirements engineering is a major software engineering action that begins during
the communication activity and continues into the modeling activity. Requirements engineering
builds a bridge to design and construction. The bridge could begin at the feet of the project
stakeholders (e.g., managers, customers, end users), where business need is defined, user scenarios
are described, functions and features are delineated, and project constraints are identified.
Requirements engineering provides the appropriate mechanism for understanding what the
customer wants, analyzing need, assessing feasibility, negotiating a reasonable solution,
specifying the solution unambiguously, validating the specification, and managing the
requirements as they are transformed into an operational system.

Requirement engineering document is a specification for a particular software product,
program or set of program that performs some certain functions for a specific environment
[SK0510]. The software requirements document (sometimes called the Software Requirements
Specification or SRS) is an official statement of what the system developers should implement. It
should include both the user requirements for a system and a detailed specification of the system

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1468
ISSN 2229-5518

requirements. Sometimes, the user and system requirement are integrated into a single description.
In other cases, the user requirements are defined in an introduction to the system requirements
specification. If there are a large number of requirements, the detailed system requirements may
be presented as a separate document [Som11].

4. Unified Modeling Language

The UML is a general-purpose visual modeling language that is used to specify,
visualize construct and document the artifacts of a software system. The emergence of UML as an
industry standard for modeling system has encouraged the use of automated software tools that
facilitate the development process form analysis through coding. It provides several diagram types
that can be used to view and model the software system from different perspectives and/or at
different levels of abstraction [NT05]. As UML is not a methodology it is left to the user to follow
whatever processes they deem appropriate in order to generate the designs described by the
diagrams. UML does not constrain this; it merely allows those designs to be expressed in an easy
to use, but precise, graphical notation [Ken09].

4.1. UML Class Diagram

A class diagram is an abstraction for all the possible object diagrams that can be
describes the types of the objects in the system and the relationships that exist between them
[BS04]. A class is represented as a box with the name of the class inside, the name should always
be singular and start with a capital letter. Optionally, the class diagram may also show the
attributes and operations contained in each class. Figure (1) illustrates how a class can be drawn at
several different levels of detail[LLO5].

Rectangle Rectangle Rectangle Rectangle Rectangle
getAreal() height height — height: int
resize() width width — width:

getAreal) + getAreal): int
resize() + resize(int,int)

Figure (1) The Rectangle class at several levels of details

4.2. UML Sequence Diagram

The sequence diagrams describe how the system works over a period of time.
Sequence diagrams are ‘dynamic’ rather than “static’ representation of the system. They show the
sequence of method invocations within and between objects over a period of time. They are useful
for understanding how objects collaborate in a particular scenario as shown in the example in the
Figure (2) [Ken09]. There are three objects in this scenario. Time runs from top to bottom, and the
vertical dashed lines (lifelines) indicate the objects ‘continued existence through time. The logic of
a scenario often depends on selection (if) and iteration (loops). There is notation (interaction
frames) which allow ifs and loops to be represented in sequence diagrams however these tend to
make the diagrams cluttered. Sequence diagrams are generally best used for illustrating particular
cases, with the full refinement reserved for implementation code [Ken09].
4.3. Use Case Diagram

The use case diagram shows the relationship between actors and use cases. Use case
diagram explains about how the system is going to interact with the outside environment. The
components are: actor, use case, relationship, and package. Actor is someone or something that is

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1469
ISSN 2229-5518

interacting with the system. Use cases are nothing but scenarios of the system. If the abstraction
level of the diagram is more enough as an estimation of the function point can be derived from it.
Different use cases must be consistent and describe the behavior of the system [RRR12]. An actor
symbol is rendered as a stick man, and a use-case as an ellipse. An interaction between an actor
and a use-case is presented as an unadorned line between the two as shown in Figure (3) [BS04].

objectl : Classl object2 : Class2 object3 : Class3 ‘

oL
>

method0 methodl

|
>

F==="

method2(parl. par2)

L

method3

method4 return-value

=

Figure (2) a sequence diagram example

O - -

- - T TT—
Open new account)

clerk

Credit account 3
KI\ — I

o T
-
— Debit aocou?t ,)

customer

Obtain account balance)

O o
i Determine total bank assetD

manager

Figure (3) Community Bank Use Cases

5. Requirement Engineering Measurements

Technical work in software engineering begins with the creation of the requirements
model. It is at this stage that requirements are derived and a foundation for design is established.
Therefore, product metrics that provide insight into the quality of the analysis model are desirable.
Although relatively few analysis and specification metrics have appeared in the literature, it is
possible to adapt metrics that are often used for project estimation and apply them in this context.
These metrics examine the requirements model with the intent of predicting the “size” of the
resultant system. Size is sometimes (but not always) an indicator of design complexity and is

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1470
ISSN 2229-5518

almost always an indicator of increased coding, integration, and testing effort [Pre10]. Some of
these metrics have been selected:
5.1 Use Case Points (UCP) metric

The use case points (UCP) method of software estimation was developed by Gustav
Karner of Objectory System (later Rational Software and now IBM) in 1993 [Kar93]. It was
developed for those software developers using Unified Modeling Language (UML) and Rational
Unified Process (RUP) for software engineering and development. Each use case is comprised of
actors. Each actor is classified into one of three levels based on complexity as shown in table (1)
and each use case falls into one of three classes based on complexity. Each of these three classes
categorizes use cases in one of two ways, either by number of transactions or by number of classes
as shown in table (2) [Che09].

Table (1) Weighted actor

Complexity Definition Weight
Simple A system interface 1
Average A protocol-driven interface 2
Complex A GUI 3

Table (2) Weighted use case

Complexity Definition Weight
Simple 1 to 3 transactions or 5 or fewer classes in the software 5
Average 4 to 7 transactions or 6 to 10 classes in the software 10
Complex 8 or more transactions or 11 or more classes in the software 15

To get the Unadjusted Use Case Points (UUCP), the weights of the actors and the use cases

are summed together [Che09]:
UUCP =28 115 * Wi oo e (1)
where n; is the number of items of variety i. W; is the weight of variety i. i=1 to 6 according to the
total types of the weighted use cases and actors. If there is no information about the
implementation project environment and the environment we can use the UUCP for the
estimation. Otherwise the UUCP would have to be adjusted to get a better estimation. Now the
UUCP are adjusted with two types of factors: Technical complexity factor (TCF) and
Environment complexity factor (ECF). Each of these factors shown in tables (3) and (4) are rated
from 0 to 5, where 0 means the factor is irrelevant and 5 means the factor is most important. Each
factor has a predetermined weight. The final value for each of the factors is the value obtained by
multiplying the assigned value by its predetermined weight. Computation of the technical factor
(TF) is shown in table (3) [Che09]:
TF = 313 Ty % Wi e (2)

where T; is the factors contributing to complexity of variety i, i=1 to 13 according to the total
number of factors, (0.6) is a constant.

TCF = 0.6 4+ TF/100........ccocooiiiiieeeeee e 3)

Table (4) shows the computation of the environmental factor (EF) such that [Che09]:
EF = Y% | E; * W,.. (4)

ECF = 1.4 + (—0. 03 EF) o . (5)

where E; is the factor contrlbutlng to eff|C|ency of varlety I, W. IS the weight of variety i, (1.4) and
(-0.03) are constants. Now the use case points (UCP) is counted using the UUCP the unadjusted
use case points, TCF the technical factor, and the ECF the environmental factor [CheQ9]:

UCP = UUCP # TCF #ECFccecoovvevveevereeceinieeeeeeeeeeeiaeaenennne. (6)

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013

ISSN 2229-5518

Table (3) Factors contributing to complexity

1471

T; Factors Contributing to Complexity Wi
T Distributed systems 2
T, Response time 1
T, End user efficiency 1
T, Complex internal processing 1
Ts Reusable code 1
Ts Easy to install 0.5
T, Easy to use 0.5
Ts Portable 2
Ty Easy to change 1
T Concurrent 1
Tu Security features 1
T Access for third parties 1
Tis Special training 1

Table (4) Factors contributing to efficiency

E; Factors contributing to efficiency W;
E, Familiarity with project model used 1.5
E, Application Experience 0.5
E; Object-oriented experience of the team 1
E, Lead analyst capability 0.5
Es Motivation of the team 1
Eg Stability of requirements 2
E, Part-time staff -1
Eg Difficult programming language -1

5.2. Object Points (OP) metric

The object points (OP) method is used in COCOMOII (Constructive Cost Model) [Coc] as the
size measure for a proposed software product. With the OP method, the software artifacts (screens,
reports, and 3GL components) are enumerated. Each of these objects is rated on a complexity
level as simple, medium, or difficult. The rules for classifying screens into different levels of
complexity are shown in table (5). “Server” indicates tables on the server. “Client” indicates tables
on the client machine. 3GL components have only one level of complexity, and that is the
“difficult” level. These objects are given a weight that depends on the complexity level, as shown
in table (6). Then all the objects are enumerated and summarized in a table, as shown in table (7)

[Che09].
Table (5) Complexity levels for screens
Number and source of data tables
Number Total <4 Total between 4 and 8 Total > 8
of views contained | (1 server,1 or 2 clients) (2 or 3 servers, 3 to 5 clients) (>3 servers,> 5 clients)

2 or less Simple Simple Medium

3to7 Simple Medium Difficult
8 or more Medium Difficult Difficult

Table (6) Complexity levels for reports

Number and source of data tables

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013

ISSN 2229-5518

1472

Number Total <4 Total between 4 and 8 Total > 8
of sections contained | (1 server,1 or 2 clients) (2 or 3 servers, (>3 servers,
3 to 5 clients) > 5 clients)
1 Simple Simple Medium
20r3 Simple Medium Difficult
4 or more Medium Difficult Difficult
Table (7) Weights for objects
Weight based on complexity level
Object Simple Medium Difficult
Screen 1 2 3
Report 2 5 8
3GL components NA NA 10

5.3. The COSMIC - FFP (FSM) Method

COSMIC [Cos09] stands for the (Common Software Measurement International Consortium),
FFP stands for (Full Function Point) and FSM is the (Functional Size Measure). The purpose of
the COSMIC method is to provide a standardized method of measuring a functional size of
software from the functional domains commonly referred to as “business application’ software and
‘real-time’ software.

This method is based on two phases. The COSMIC-FFP mapping phase takes as input the
specification of Functional User Requirements (FUR). This specification may be at different levels
of abstraction which generates the identification of different software layers as a result of a
functional partition of the system. Later the boundary is identified, which is defined as a
conceptual interface between the software under study and its users. The collection of FURS can
be decomposed into a set of functional processes. Each functional process is a unique, cohesive
and independently executable set of data movements, with data groups being defined as a distinct,
non empty, non ordered and non redundant set of data attributes. The measurement method does
not require identifying the data attributes. These might be identified if a sub-unit of measure is
required. The measurement phase begins with the identification of the data movements of each
functional process. A data movement, moves one or more data attributes than belong to one data
group. The four valid types of data movement are: entry, read, write and exit [FAP12].

e An entry moves a data group from a user across the boundary into the functional process

where it is required.

e A read moves a data group from persistent storage within reach of the functional process

that requires it.

e A write moves a data group from inside a functional process to persistent storage.

e An exit moves a data group from a functional process across the boundary to the user that

requires it.

The objective of this phase is to produce a quantitative value based on the measurement
principle, which is established in COSMIC-FFP. The measurement function is applied to each
instance of a data movement by assigning a numerical quantity, 1 Cfsu (Cosmic Functional Size
Unit). Finally, the application of the aggregation function continues if the data movements of all
the functional processes have been measured. This way, the functional size of a functional process
is the sum of the functional sizes of individual data movements. Finally, the functional size of a
software layer is defined as the sum of the functional sizes of its respective functional processes.

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1473
ISSN 2229-5518

The measurement phase aims to produce a quantitative value that represents the software
functional size. In order to do this, the data movement types are identified. Then, the measurement
function is applied and finally, the respective aggregation functions are found [FAP12].

Step 1.-ldentification of the data movements:

The four types of data movements (entry, read, write and exit) are identified basically in the
respective message types defined in the Sequence Diagrams of the OO-Method Requirements
Analysis Process (signal, query, service and connect). The relationship between the concepts of an
entry data movement type and a signal message with input value is trivial. Nevertheless, it is
necessary to indicate whether the data entry involves attributes of different data groups. Thus the
rules to identify one entry for each different data group are [FAP12]:

Rule 1: “Accept each message labeled with the stereotype <<signal>> and with the input value as
an ENTRY data movement”. For the identification of READ data movements, we consider all the
movements that recover attributes values pertaining to the same stored data group. The messages
with the stereotype <<query>> represent data movements since they imply read the state of
objects.

Rule2: “Accept each message labeled with the stereotype <<query>>as a READ data movement”.
The condition of a message represents a READ data movement because before execution, it
implies recovering the value of the attributes involved in the condition in order to evaluate it.

Rule 3: “Accept each condition for some message type as a READ data movement”. In the
specification of a use case, it is possible to associate a precondition. It indicates a condition that
must be satisfied before also the execution of the use case. In accordance with Rule 3, a
precondition is also a READ data movement as defined in the following rule:

Rule 4: “Accept each precondition defined in the specification of a use case as a READ data
movement”. The following rule is not specifically associated to a sequence diagram but rather to
the entire system since it is defined as a class property. This rule is considered as a complementary
rule to the identification of read data movements and should be evaluated after the execution of
any service in the quoted class.

Rule 5: “Accept each integrity constraint as a READ data movement”. A service message allows
us to create, destroy or update the state of objects. This message type implies a write data
movement, since there is a change of state in these persistent objects.

Rule 6: “Accept each messages labeled with the stereotypes <<service/new>>,
<<service/destroy>> or <<service/update>> as a WRITE data movement”. Since a message with
the stereotype <<connect>> implies the creation or destruction of a link between the objects of the
respective classes, this type of message is also considered as a write data movement.

Rule 7: “Accept all message labeled with the stereotype <<connect>>as a WRITE data
movement”. The relationship between an exit data movement and a signal message with output
value is trivial. Both concepts imply moving a data group from a functional process across the
boundary to the user that requires it.

Therefore, the proposed rule is as follows:

Rule 8: “Accept each message labeled with the stereotype <<signal>> and with the output value
as an EXIT data movement”.

Step 2.-Applying the measurement function:

This step consists of applying the COSMIC-FFP measurement function to each data
movement identified in each functional process (use case). In the equation described below (7),
each instance of a data movement identified (entry, read, write and exit) receives a numerical size
of 1 Cfsu (Cosmic Functional Size Unit) [FAP12].

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1474
ISSN 2229-5518

Step 3.-Aggregation function at the functional process level:

This step consists of adding the results of the measurement function applied to all the data
movements identified in each functional process. The aggregation function at this level (use case)
is as follows [FAP12]:

Rule 9: “The functional size of a use case is equal to the sum of all data movements identified”.
However, two additional rules are defined due to the relationships that appear between use cases.
In order to measure the functional size of a use case extended by one or more secondary use cases,
the aggregation function is explained in the following rule:

Rule 10: “The functional size of a base use case extended by another secondary use case set is
equal to the sum of the functional sub-processes identified in each secondary use case plus the
functional sub-processes of the base use case”. In a similar way, in order to a relationship include
the functional size of a base use case is explained in the following rule:

Rule 11: “The functional size of a base use case that includes other secondary use cases is equal to
the sum of the functional sub-processes identified in each included use case plus the functional
sub-processes of the base use case”. These two rules are expressed in the equation [FAP12]:

Size (Base_Use Case) = Z?zl(Secondary_Use Case;) + Sizep(Base_Use Case) (8)

where i is the total number of use cases, p is the sub process.

Step 4.-Aggregation function at the software layer level:

This step consists of adding the results of the measurement function applied to all primary use
case identified as functional processes in the software system delimited by the boundary. The
secondary use cases are not considered in this step because they are not externals interactions.
Therefore, the rule is as follows:
Rule 12: “The functional size of a software layer is equal to the sum of the functional sizes of all
the primary use case (functional processes)”. This rule is expressed in the following equation
[FAP12]:
Size Layerl = Z?=1 Size (Primary_Use Case;)cccccecvveeennnennnnn (9)

where i is the total number of the primary use cases

6. Code Metrics

The code metrics are used to measure the software product (source code), at the end of the
development stage (at the testing process), during design, and/or at the end of each deliverable.
There are many object oriented code metrics, some measure the class, the project, or the properties
of the object oriented (OO) concepts.

6.1. Chidamber and Kemerer (CK) metrics

Metric set proposed by Chidamber and Kemere [CK94], contains six object oriented design
metrics. Three metrics have been selected, these metrics are used to measure software size and/or
complexity, and they are listed as follows:

A. Weighted Methods per Class (WMC)

WMC relates directly to Bunge’s definition of complexity of a thing, since methods are
properties of object classes and complexity is determined by the cardinality of its set of properties.
The number of methods is, therefore, a measure of class definition as well as being attributes of a
class, since attributes correspond to properties.

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1475
ISSN 2229-5518

Consider a Class, with methods M1, ..., Mn that are defined in the class. Let cq,..., ¢, be the
complexity of the methods. Then [Jam06]:
WMC = YL € vovvenieeiieveeeneie e seseessnesen e e een eee e (10)

If all method complexities are considered to be unity, then WMC= n, the number of methods. This
metric is used to measure the complexity and size of each class in the project with the following
viewpoints [JamO06]:

The number of methods and the complexity of methods involved is a predictor of how much time
and effort is required to develop and maintain the class.

The larger the number of methods in a class the greater the potential impact on children, since
children will inherit all the methods defined in the class.

Classes with large numbers of methods are likely to be more application specific, limiting the
possibility of reuse.

B. Depth of Inheritance Tree (DIT)

DIT relates to Bunge’s notion of the scope of properties. DIT is a measure of how
many ancestor classes can potentially affect this class. Depth of inheritance of the class is the DIT
metric for the class. In cases involving multiple inheritances, the DIT will be the maximum length
form the node to the root of the tree. This metric can be used to measure the complexity and size
[JamO06].

6.2. Lorenz and Kidd (LK) Class Size (CS)

A class size can be measured in a number of different ways. This set of metrics is
proposed by Lorenz and Kidd [LK94]. These metrics deal with quantifying an individual class,
they are summed together to measure the class size (CS) [JSO04]:

A. Number of Class Methods in a Class

The number of methods available to the class and not its instance affects the size of
the class. The number should generally be relatively small compared to the number of instance
methods. The number of class methods can indicate the amount of commonalty being handled for
all instances. It can also indicate poor design if service better handled by individual instances are
handled by the class itself. As indication that this is occurring is an abundance of conditional logic
based on data values [JS04].

B. Number of Class Variables in a Class

Class variables are localized globals, providing common objects to all the instances of
a class. There are usually a relatively low number of class variables compared to instance
variables. The class variables are often used to provide customizable constant values that are used
to affect all the instances behavior. They might coordinate information across all instances, such
as the determination of a unique value for a transaction number [JS04].

7. Relative Error Measurement
Error measurement is a potential source of non-sampling bias in many surveys. It
occurs when the information to be obtained on one or more variables in the study is miss-
measured. This happens, for example, as a result of an imprecise or inaccurate data collection
instrument, complexities inherent to the variable being measured, and difficulties to the
respondent inform the true response properly. This source of error is potentially a concern for the
survey users because, if unaccounted for, it could affect the quality of the data collected and, as a
possible consequence, distort the inferences for the parameters of interest [SS12].
Approximation error is the discrepancy between an exact value and some approximation to it.
An approximation error can occur because the measurement of the data is not precise due to the

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1476
ISSN 2229-5518

instruments or approximations are used instead of the real data. One error measurement is
selected, that is the Relative error which accounts for the relative size of error. The relative error is
given by the difference between an experimentally determined or approximated value v, and the
accepted value v, divided by the accepted value and multiplied by 100% [GL96].

Relative error = 'Vlv;m X L0000, (11)
2

8. Building Estimation Models

A model can be built and used to estimate or predict the parameter of interest by using
the metric values that can be measured. Such models are generally process-specific as the property
of interest depends on the process. That is, if the process changes, the value of the property will
change even of the input values (i.e., the metrics that have been measured) are the same. A model
for the software process (or a part of it) can be represented as [Jal97]:

Y = F (X1, X2, ey Xp) eev e eenteeriiiiieeesieseeeseseeesieseensesressesen e s ee s aneenans (12)

The dependent variable y is the metric of interest (e.g., the total effort, reliability, etc.). X1, Xz,
..., Xp are independent variables that typically represent some metric values that can be measured
when this model is to be applied. The function f is really the model itself that specifies how y
depends on these independent variables for the process. A model may be theoretical or data-
driven. In a theoretical model, the relationship between the dependent and independent variables is
determined by some existing relationships that are known. Such models are independent of data.
Data-driven models are generally the result of statistical analysis of the data collected about the
process from previous projects. In these models, one hypothesizes some model, whose actual
parameters are then determined through the analysis of data. Many of the process models used in
project management are data-driven. Collecting data for building such models is the major reason
for the termination analysis phase of the management process [Jal97].

9. The Proposed Software Measurement Tool

The proposed software measurement tool is used to measure code metrics based on
requirement engineering document by compute the proposed Requirement Model (RM) and the
proposed Code Model (CM). This software measurement tool analyzes the requirement documents
and the code of any tested software system to collect, analyzes, and save the required data that is
needed to compute the selected metrics.

The proposed software measurement tool is capable of creating requirement documents for
any software system by using the proposed UML tool where the required data needed to compute
the selected requirement metrics are collected in the data-base automatically once the UML
diagrams have been created, and then the proposed RM is computed automatically. The code
metrics and the proposed CM are computed automatically just by selecting the project folder. The
CM and the code metrics are used for comparison and prove purpose.

9.1 Computing the Requirement Metrics

There exist a number of requirement metrics, but some of them are selected because
they concentrate on the object oriented size and complexity. The inputs of selected requirement
metrics are: the requirement document (required system features from the customer and developer
perspectives) and the UML diagrams created by using the UML Building tool provided by the
proposed software measurement tool. The requirement metrics are computed automatically by the
proposed system. One of the case studies is selected to demonstrate the computing process which
is the (Central Repository) case study.

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1477
ISSN 2229-5518

9.1.1. Use Case Points (UCP) Metric

The complexity of the use-case diagrams is classified according to the number of use-
cases for each use-case diagram stored in the data-base. The actor’s complexity is classified
according to the actor type: a system interface, protocol driven, or GUI. Here the UUCP is
computed automatically once the diagrams are created. Figure (4) describes the way of specifying
the scales for the technical and the environmental factors from the GUI of the proposed software
measurement tool. The scale starts from zero to five based on the customer desired features and
the developer perspective of the system under construction. The scale are (none:0, very low:1,
low:2, normal:3, high:4, very high:5) or (none:0, bad:1, fine:2, good:3, verygood:4, excellent:5)
according to the factors. Then the Use Case Points (UCP) is computed automatically based on
equation (6).

C A L C U L AT E U C p Distributed system good -
A8 il X B P4 Response time none -
End-user efficiency fine -
Internal processing complexity veryhich e
Start e -
© Code reusability good -
Easy to install bad -
Easy to use good -
Portability to other platforms normal -
L S i
—— ystem maintenance none -
Select proper —— - Concurrent/parallel processing very good -
parameters . Security features none -
\\ Access for third parties nane -
\\ End user training good -
-~
~ ~ TF= 31
s TCF= 091
Y
Familiarity with development process used fine
Application experience very good -
v Object-oriented experience of team very good
Lead analyst capability goad -
Motivation of the team good -
Press calculate ~ Stabiliy of requirements - - e T
Part-fiiesfafl normal -
Difficult prograniming Janguage o . ECF= L0235
S—a
~.
~
~ ~3
Use Case Points (UCP) = 20.5205 cakulate

Figure (4) Calculate UCP Flowchart

a. Computing UUCP: The central repository case study has two use-case diagrams according to
two actors (administrator and user) who communicate with the system via a GUI interface as
shown in figures (5) and (6) respectively, such that the actors are considered complex, each
one would be on weight 3. The use-case diagram in figure (5) has five transactions (use-cases),
that makes it average of weight 10, and the second use-case diagram in figure (6) has one
transaction (use-cases), that would make it simple of weight 5, and according to equation (1),
UUCP = (2x3) + (1x10) + (1x5) =21.

b. b. Computing the Technical Factor: The Technical Factor (TF) is computed by multiplying
the W; by a scale that is specified according to the tested system functionality which is
determined by the software developer to estimate the system at the requirement stage, such
that for the Central Repository case study, the W; and a scale for each factor are specified as
shown in table (8) along with the reasons behind selecting each scale. By using this table, the
TF and TCF are computed according to equations (2) and (3) as follows:

TF= (2x0) + (1x4) + (1x3) + (1x3) + (1x4) + (0.5x3) + (0.5%x4) + (2x3) + (1x4) + (1x2) +
(1x4) + (1x2) + (1x4) =39.5
TCF =0.6 +39.5/100 = 0.995

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1478

ISSN 2229-5518

c. Computing the Environmental Factor: The Environmental Factor (EF) is computed by
multiplying the W; for each factor by a scale that is specified according to the tested system
functionality provided by the software developer to estimate the system at the requirement stage,
such that for the Central Repository case study, the W; and a scale for each factor can be selected
as shown in table (9) and from this table, the EF and ECF are computed according to equations (4)

and (5).

EF = (1.5%3) + (0.5%4) + (1x5) + (0.5%3) + (1x3) + (2x2) + (-1x3) + (-1x3) = 14
ECF = (1.4) + (-0.03x14) = 0.98

Administator (Chane list3
enter materials
fiodity materiass

Ceniral Repository

iy

ckup copies

Figure (5) Use case diagram (Administrator responsibilities)

Ceniral Repositary

[

Figure (6) Use-case diagram (User responsibilities)

he (Central Repository) case study

Table (8) TCF computation for t

T; Factors Contributing to Complexity W,; Scales Reasons

T Distributed systems 2 0 Installed on a stand-alone PC

T, Response time 1 4 The data-base is stored on the same PC

LE End user efficiency 1 3 The user experience with computer systems is average

T, Complex internal processing 1 3 The system functions complexity levels are average

Ts Reusable code 1 4 The programmer used an object-oriented approach

Ts Easy to install 0.5 3 External data-base connection must be installed first before install
the system

T, Easy to use 0.5 4 User friendly GUI

IJSER © 2013

http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1479
ISSN 2229-5518

Tsg Portable 2 3 Can be installed on one platform (windows) with different versi
Ty Easy to change 1 4 |Programmed with an OO approach that makes it easy to change.
Ty Concurrent 1 2 It’s a stand-alone PC application not a network application
Ty Security features 1 4 The system is protected by a hardware device (USB flash)
T Access for third parties 1 2 It’s a stand-alone PC application

T3 Special training 1 4 Staff training is required

Table (9) ECF computation for the (Central Repository) case study

E; Factors contributing to efficiency W; Scales Reasons

E, Familiarity with project model used 1.5 3 New requirement for software development

E, Application Experience 0.5 4 Based on the software developer experience

E; | Object-oriented experience of the team 1 5 Based on the software developers team experience
E, Lead analyst capability 0.5 3 Based on the experience of the system analyst
Es Motivation of the team 1 3 Depends on the payment

Eg Stability of requirements 2 2 Customer changing demands

E, Part-time staff -1 3 The team worked at the same period of time
Eg Difficult programming language -1 3 Depends on the programming language difficulty

d. Computing the Use Case Points: The UCP (Use Case Points) is computed according to
equation (6) by multiplying the UUCP, TCF, and ECF together as follows:
UCP=21 x 0.995 x 0.98 = 20.4771

9.1.2. Object Points (OP) Metric

The Proposed Snap shooting the User Interface tool is used to count the OP metric
automatically once the snap-shooting process is finished along with selecting the type of each
screenshot (screen, report, and 3GL components) and the number and source of data tables. The
Central Repository case study is chosen to demonstrate the OP metric, this system is installed on
one PC; this would specify the complexity level for the screens and reports as explained below:

a. Specifying Complexity Levels for Screens: The complexity level for the screens is
determined according to tables (5) and (7) by specifying the number and source of data tables.
The Central Repository system is listed in (3 to 7) number of views contained, and the system
contains nine screens and their complexity level is as follows:

Three simple screens; their weight equals (1) hence the number and source of data tables (total
>4). Figure (7) shows one of the simple screens for the Central Repository case study from the
proposed software measurement tool GUI. Three medium screens; their weight equals (2) hence
the number and source of data tables (total between 4 and 8). Figure (8) shows one of the medium
screens for the Central Repository case study from the GUI of the proposed software measurement
tool. Three difficult screens; their weight equals (3) hence the number and source of data table
(total>8). Figure (9) shows one of the difficult screens for the Central Repository case study from
the GUI of the proposed software tool.

b. Specifying Complexity Levels for Reports : The case study contains three difficult reports,
their weight equals (8) hence the number of sections contained is (2 — 3) and the number and
source of data tables (total>8). The complexity level for the reports is specified according to tables
(6) and (7). Figure (10) shows one of the reports for the Central Repository case study from the
proposed software measurement tool GUI.

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013
ISSN 2229-5518

c. Specifying the 3GL Components: The 3GL components are special screens that are used by
the system administrators to control the data architecture of the system, the data bases, and the
interfaces. The complexity level of the 3GL components is considered difficult always. There is
only one 3GL component such that the complexity level is difficult. Figure (11) shows the 3GL
component for the Central Repository case study.

d. Compute OP: Finally, the OP is calculated by classifying each object according to the
complexity level, then multiplying the total number of each object by its complexity level, and

then sum the total for all the objects and their complexities as illustrated in table (10).

Table (10) the OP count for the Central Repository Case Study

Object Simple Medium Difficult Total
Screens 3 (screens) x1 4 (screens) x2 2 (screens) x3 17
Reports 0 (reports) x2 0 (reports) x5 3 (reports) x8 24
3GL components 1 (3GL) x10 10
Total OP 51
& e &
-
: S35 ,0dl Uiseodl - acl, il @S - slas, asols
S
5 n.\.:j....nJ| ;_:I_ Sl s sl
» sl AnlsS Sl s e elaiil
JaW e = au
eVl siaw S an
seslazl | s
Las=) J -
i x
saclal ablo>l
Uil Cheasm
CopyRight @ 2013 Baghdad University - Computer Center team
Number and source of data tables 2 - Simple
s Screem AL A 1 g
Report
3GL Component

Figure (7) GUI Screen of the Central Repository Case Study (simple)

e

‘E.n._lj_xsu

::;\ncﬂ-)n'ﬁﬁin»—l: 1

2> | Sl
A aii pligdli
ol as , o
Bolodl all>
Bloll 69

waaall

Al ads b
Eg. e
W oglial

pludyl

TR |

i = ___j=

Number and source of data tables 5 Medium

o Sereen il $aolhl Baa Sy s JUaal
Report
3GL Component

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013

ISSN 2229-5518

Figure (8) GUI Screen of the Central Repository Case Study (medium

—rET—T—|

Figure (10) GUI Report of the Central Repository Case Study

[

] P T
g Ii-d.pl.ﬂ’l).bl - . —-—— - . l":"{b"'lﬁ
i
3-\ plinall 3 umll psall o desayll e Saladl pad (3
: | o 9 338 2 WSye puunlsl £9) wgSawySan 18
H
E 2| 1305 ot 224 it oas
10
1
L wliaye | [BRI il gl asmil aitwit [[T £3kadt Bt
Lo
- M L7 L3 s ff4 3 2 1 ffo
i lads selblns e 7 Jhle $8500 jub | 10/C BY St 14
odiasd 2 solblns s 19 Somisss B500 sek | 1o B3 S Sas 15
olasd A Jor TN s 34 Jle SASin juk | i BY S Sen 16
[YPom adi Jelilns v 24 Jisle SASA8 jut | i B oS Sl 17
—
ol Al Jor oY aas 1 Sl $A5An el | il Wl K0 19
¥ alewd b Jelbine pev 2 ele B85 jutt | 1o phsel 1S S 0
Number and source of data tables 8 - Difficult
o Screen Ll Sl ga il
Report
3GL Component -
Figure (9) GUI Screen of the Central Repository Case Study (difficult)
[l =
o C) 2 £) . ——
¥ C - - . — W -
: e = = =
. 5 o = =
- o ; = o = =
i F : = =
L 1 - Jur— - —
1w A - . P - e
n P - o — " -
= - @ - i = i
fe i . TR 2
= 2 = e =
T : = e =
NIIMPI“;OIKQNM ll-m U‘ : - .Ill;'lknll 25 i =
Sereen &y il g
* Report
| AGL Component

(difficult)

SV A ek 3 Sk pashits sSa ss Al
Jopt o8, gl a8 Salast o
deplt Bt | bosil gl Amicnll A5l 8l B8
Sssmall mpdl At Anliandt apall e Satai wis
8 sacmall apall St Siamall el st i
Sepnall _ple Ahbigall oy kil A a8 S3ladl old Sams
eatntl ol ARMIBO Basls ekl A Bests adkaudl
il S 8y epmall AT ab; b Ak
bl | S PovE SR X - sl
i Phicaal ek Sl ady
sl igas eyl CAgan | kit iy
F Jam0ll st [Eiatl —____|
kel A aee St oy R
[reeee Aaii a3, gt Bt
N e AaiS
et a3, | casmam] st cata

Adbend obliai]

o poe

Number and source of data tables 8 - Difficulr
© Screen AL G yidate
Report

@ 3GL Component

Figure (11) 3GL Component of the Central Repository Case Study

IJSER © 2013
http://www.ijser.org

1481

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1482
ISSN 2229-5518

9.1.3. Functional Size Measure (FSM)

The computation of the FSM depends on the UML sequence diagram. According to

equation (7), each data movement is (entry, exit, read, and write) is identified, would increases the
Cfsu by one while the acknowledgments are neglected because they are not considered as data
movements. All the sequence diagrams for the system are measured and according to equations (8)
and (9) the FSM is the sum of the data movements of all the sequence diagrams for the system.
For the Central Repository case study, there are three sequence diagrams illustrated in figures
(12), (13), and (14). It can be seen from figure (12) that there are five data movements, such that
FSM =5 Cfsu. From the second sequence diagram shown in figure (13), it can be seen that there
are seven data movements, such that FSM = 7 Cfsu. Finally there are seven data movements for
the third sequence diagram shown in figure (14) such that FSM = 3 Cfsu. All the
acknowledgements in all the sequence diagrams are neglected. According to equation (10), the
finaAl FSM =5+ 7 + 3 =15.

I Sequence Diagram

[Tools Bala JW&a) [save | [saveasimage | [printvertical paper | [printhorizental paper |

ATl pixiwoll agxly

[T e N R R]

o pd
?J——[D prppT—" I>——E11
—e, A—m

o—L. ... D—=m

R S
: —L D

0
1
2z
3
4
= I I
B
7
B
9

:-_-_[D e i vl D—T
B—c L I1—=

10 T:—'— ED ymnnd Sl 3l D"——-l

:; .__m Baln jlocH D_:
13 1—-[1; TR D—’T

16 — m s D—-— :
: o

Figure (13) CreaEing a contract sequence diagram for the Central Repository Case Study

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1483
ISSN 2229-5518

Sequence Diagram

[T] Tools J.UES ;L:Jl [save] [Save As Image] [print vertical paper] [print horizental paper]

pasianll il dgaly

é]'_"w s oLl s D"—@

L T T R N R

[i]-—'w ol g lassl D—_%]
10 %]_‘w 8 ylckall Cliladl Lk D—Ei]
n
12 @“4] i Ll 1]-—@

Figure (14) Creating a report sequence diagram for the Central Repository Case Study

9.2 The Code Measuring

This part of the proposed software measurement tool is responsible for comparison
and proving purposes. The source code of the tested system is entered by selecting the (Java, C#,
or VB) project folder or as a text file straight from their stored location. The proposed software
measurement tool stores the source code of the tested system for documentation. The steps to
measure the code metrics are as follows:
a. Brows the PC to choose the project folder: The tested system’s source code files are
automatically combined together in one list and the next operations are preformed sequentially.
Figure (15) shows the browsing process to select the targeted system from its stored location.
b. Remove Comment lines: The comment lines are not part of the measurement process so
the remaining lines are the pure source code. The total lines of code are counted automatically to
show the size of the system after and before removing the comment lines. The comments in most
of the programming languages are either (// comment line), (/* comment lines */) in JAVA and
C#, or (* comment) in Visual Basic and the process of deleting the comment lines are shown in

figure (16).
BROWS PROJECT FOLDER

[Get a source code]- ——————————— * [open pmject folder]
Select the root folder L
[\\ Browse For Folder @
~
~
b Y
hY
~
~
\\ B Desktop
\\ 4 Libraries E
' ni& Homegroup
A aldoory ibm
[Press ok }"'q.“ 18 Computer
...""-....‘ €8 Network
.""'-. o [E8 Control Panel
-~
_;‘-Rgc{cle Bin o
4 ~4| »
T
e

Figure (15) Open Project Folder Flowchart from the Proposed Software Measurement Tool

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1484
ISSN 2229-5518

REMOVE COMMENTS

[Read line]

sit a
comment

[Remove line]

Figure (16) Remove Comment Lines Flowchart

c. Compute the Weighted Method per Class (WMC) metric : There are several methods to
measure the complexity of a class. Based on equation (10), the WMC metric is programmed using
the following proposed method: wherever a decision exists such as loops, conditional statement,
switch statements, compound conditions, method calls (methods that are constructed by the
programmer only), are encountered; then the DE (Decision Count) is increased by one such that:
Method Complexity = DE + 1 ..o, (13)

Figure (17) shows the flowchart for computing the WMC metric. Figure (18) shows the keyword
count algorithm where the tested system source code is read line by line to search for certain
keywords {if, for, while, goto, swith, &&, ||, foreach, do}. To compute the total number of method
calls, a second method have been developed to store the function names in a list as shown in figure
(19), then another method is created to look for the function calls in the tested system source code
line by line as shown in figure (20). Figure (21) shows a method segment in the (Central
Repository) case study which is programmed with C#, from this figure it can be seen that there
are: one (IF) Statement, two call methods for the method GetFiles, each one increases the DE by
1; the method complexity for this method equals four.

d. Compute the Depth of Inheritance Tree (DIT) metric: The DIT metric focuses on the
class levels in the class inheritance hierarchy, the root of the tree is considered level zero (DIT),
and the level is increased when every node is encountered until the leaves are reached at the end of
the inheritance tree, the leaves are in the highest level of the tree and this level represents the DIT
metric. The DIT is a measure for both size and complexity. The DIT is programmed as show in
figure (22), whenever a class inherits form another class, its father class is checked to see if it also
inherits from another class, a counter starts form O that is increases by one whenever class
inheritance is encountered, The DIT is performed for each class in the tested system. Figure (23)
shows the class diagram for the (Central Repository) Case study, The father class is (form1), that
makes it level 0, the class (R_Data_Structures) inherits from class (forml), so it’s level 1, and
class (access_2007_db_connection) inherits from class (R_Data_Structures) and that’s makes it
level 2.

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1485
ISSN 2229-5518

Figure (17) Compute WMC Flowchart

Input: Source Lines of Code of the tested system
Output: keywords count

Step 1: determine the keyword by get_keyword(string k) //EX “while”
Step 2: get a line of code as string in LOC

Step 3: set parameters x=0, temp=NULL, keycount=0

Step 4: IF (x>(LOC.length - keyword.length)) then GOTO 10
Step 5: IF (temp.length == keyword.length) then goto 8
Step 6: temp=temp + LOC[x]

Step 7: x= x+1 : GOTO 5

Step 8: if (temp == keyword) GOTO 11

Step 9: GOTO 3

Step 10 : Exit

Step 11: keycount= keycount+1

N /

Figure (18) Keyword Count Algorithm

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1486
ISSN 2229-5518

Input: Source Lines of Code of the tested system
Output: Function names list

Step 3: GOTO 1

Step 4: IF LOC end with “)” return LOC in functions list

Step 1: get a new line of code as string in LOC from code list
Step 2: IF LOC start with {“void”,”int””string”,”double”, “char”,”bool”} GOTO 4
Step 5: GOTO 1

Figure (19) Build a List of Function Names Algorithm

Input: Source Lines of Code of the tested system + Function names list
Output: Functions calls count

étep 1: get a new line of code as string in LOC from code list \
Step 2: IF LOC contain ‘(" and LOC contain ‘)" GOTO 3 ELSE GOTO 6
Step 3: for each item (itm) in functions list
Step 4: IF LOC contain (itm) return (LOC) in Calls list
Step 5 : next ITEM
Step 6: GOTO 1
Step 7: FCcount=FCcount + Calls list.count

= /

Figure (20) Computing Functions Calls Algorithm

public void Full_Path_Array(string From_This_Directoty, bool true_to_get_everything)

{

try

{
if (true_to_get_everything)
{
filePaths = Directory.GetFiles(From_This_Directoty,

"* txt",searchOption.AllDirectories);

}

else

filePaths=Directory.GetFiles(From_This_Directoty,"*.txt",SearchOption.TopDirectoryOnly);
}
}
catch {}

}

Figure (21) a method from the (Central Repository) Case study

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1487
ISSN 2229-5518

DEPTH OF INHERITANCE TREE

[For each class]@

Figure (22) Compute DIT Flowchart

1
. [7] Hide/show
/ T x4 s sk nms s mmsmanaama s s Level 0

1
— [¥] Hide/show)

pri e S | R -t S Level 1
_ string [] filePaths
_ string [] folderPaths o
0.1
<> [¥] Hide/show =
+ access2007_db_comnec |+ void Full Path Arr: -
- e ooy [T WGALE 7T e+ s Level 2
+ string db_conn = +void Full Folder A:
+ string d_adapter + string [Full_Your @ —

+ string comand
+ string [][][] ds i

+void access2007_db -
+void excute sql ()
+ string [][][] full_data

Figure (23) Leveled Class Diagram for the (Central Repository) Case Study from the
Proposed Software Measurement Software tool

e. Computing the Class Size (CS) metric: The class size is the total number of the methods and
attributes of each class, figure (24) shows the flowchart for computing the CS metric. A custom
made algorithm works like a compiler to distinguish the attributes and methods built by the
software developer of the tested system by transforming the source lines of code into string, then
searches for attributes and functions based on the programming language structure to determine
either the line is an attribute or function. Figure (25) shows a class within the (Central Repository)
case study, which contains four attributes which are: OleDbConnection, OleDbDataAdapter,
OleDbCommand, DataSet. And five methods which are: access2007_db_connection(string
dbpath), access2007_db_connection(string dbpath, string user_id, string password),
access2007_db_connection(string dbpath, string password), excute_sql(string sgl_command),
full_dataset(string sql_query). The CS is the total number of attributes and methods, so CS here is

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1488
ISSN 2229-5518

equal to nine. Figure (26) shows the code measures of the Central Repository case study from the
GUI of the proposed software measurement tool.

o CLASS SIZE

~r

For each class
—

Isit
attribute

Isit
operation

Figure (24) Compute CS Flowchart

public class access2007_db_connection : R_Data_Structures

{
public OleDbConnection db_conn;

public OleDbDataAdapter d_adapter;
public OleDbCommand comand;
public DataSet ds;

public access2007_db_connection(string dbpath)

{..}
public access2007_db_connection(string dbpath, string user_id, string password)
{..}
public access2007_db_connection(string dbpath, string password)
{..}
public void excute_sql(string sql_command)
{..}
public void full_dataset(string sql_query)
{..}
}

Figure (25) a class from the (Central Repository) case study

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1489
ISSN 2229-5518

— e —————|

¥ Sofrware Estimation - = | E)

olapsed & open project folder] [Text File C#] l Text File java I

DISPLAY: none

}

foot Language : C#

{

BACKGROUND-COLOR: £ffFf,; in=812 end=!

BORDER-BOTTOM: #cecfdc 1px solid; Blocks Begin=812 end=819

BORDER-TOP: #recfc 2px solid

Sum Of Classes 28

}
settings

MARGIN-LEFT: 25PX; depth of inheritance tree DIT=0

hep
Weighted Methods Per Class ~ WMC =013
TEXT-ALIGN: right;
margin-right: 10px;
3 Number of functions 474
using System;

using System. Collections. Generic;
using System. Componenthodel;
using System. Drawing;

using System.Data;

using System. Ling; My Own Fn Calls

using System, Text; = p=
using System, Windows, Forms;

namespace terminl

N
[
3

dass begn end father
255 name "

i al at S oIT father name WMC size

T N T S S -
colorchage 478 1238 -] non 6 54
fontselection 1258 1274 UserControl 6 4
fontsize 1294 1313 UserControl 6 4
Form1 1418 1701
Form2 1716 2994 Form 318 82

| Form2 2099 4611 |- non 7 116 = —
g L b DIT CS WMC 0 12380 304.333.

C:\Users\oopgotoguy\Desktop\my workitry the exam LOC = 9595

Figure (26) the Code Measures of the Central Repository Case Study from the GUI of the
Proposed Software Measurement Tool

non 6 19

308 8 5 8 8 ¥ o8 8

1 0
1 0
1 0
Form1 1325 1414 |1 0 Form 31 14
1 0
1 0
1 0

Mo (o [+

9.3 Requirement Model (RM) and Code Model (CM)

Ten case studies have been collected and analyzed by using the selected code and requirement
metrics. These metrics focus on the size and complexity concepts, for example, table (11)
illustrates the final requirement metrics extracted from the requirement engineering documents for
the Central Repository Case Study.

Table (11) Requirement Measures for the Central Repository Case Study

Requirement Metric Value
UCP 20.4771
OoP 51
FSM 15

The results have been gathered so it would be possible to simply aggregate the
requirement metrics that are measured straight from the Object-Oriented system requirement
engineering documents and according to the requirement metrics results. A mathematical model is
proposed based on the concept of building an estimation model equation (12), this model is named
the RM (Requirement Model) which its equation can be used to estimate the code measures based
on requirements engineering documents.

RM = UCP + FSM + OP.........cooooiriinrieeineseeee e en e (14)

Where UCP is the Use Case Points metric, FSM is the Functional Size Measure metric,
and OP is the Object Points metric

Based on the proposed equation (14) RM for the Central Repository case study is as follows:
RM = 204771+ 15+ 51 =86.4771

To find and prove the RM model, the proposed CM (Code Model) is proposed using the
selected code metric that are calculated for each class in every system. For example table (12)
shows the final code metrics for the Central Repository Case Study. The CM (Code Model)
equation is:

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1490
ISSN 2229-5518

_ YL WMC+YL,DIT+3Y[L,CS

CM ceeeieenen (15)

n
where WMC is the Weighted Method per Class metric, DIT is the Depth of Inheritance Tree
metric, CS is the Class Size metric, and n is the number of classes.
Based on the proposed equation (14) the CM for the Central Repository case study is as
follows:
188+ 2+ 77
= — =289

3
Table (12) Code Measures for the Central Repository Case Study
Code Metric Value
WMC 188
DIT 2
CS 77
no. of classes 3

It can be seen that the RM = CM and according to equation (11) the relative error between
the RM and CM is computed as follows:

19928647711 % 100% = 0.0283%

So the relative error is very low, such that the proposed RM which is derived from the
requirement engineering documents can be used to estimate the code metrics.

Relative Error =

10 Results and Discussion

Ten case studies have been analyzed; the requirement metrics for all the case studies
are shown in table (13). The final results for computing the proposed RM and the Proposed CM
are shown in table (14), and the code metrics for the case studies are listed from in table (15-24) in
the appendix. it can be seen that by measuring the relative error according to equation (11) for
each case study and calculating the average of the ten case studies, the error value is insignificant
and the relation is proved to be approximately linear between the proposed CM and RM formulas,
and thus the CM could be estimated from the RM.
Figure (27) shows the scatter diagram for all the ten tested case studies, the labeled numbers on
the diagram represent the number of the case study, where each case study has a set of its own
(RM,CM) point. This figure shows the linear relationship between the RM and CM. This indicates
that the ability to estimate the code metrics based on the proposed RM that is extracted from the
requirement engineering document.

The system developers would benefit the most form anticipating the code measures at the
requirement phase, hence they would be able to obtain the size and complexity measures of the
source code in advance. By using the proposed software measurement tool, the programmers
would have the privilege to anticipated the source code measure in advance, document the system
by using the UML documentation and drawing tools and thus the customers would have a
complete view of the system under construction along with its functionality.

11. Conclusions

1. The proposed software measurement tool enables the user to create requirement
engineering documents by using the proposed UML tools to generate (use- case
diagrams, sequence diagrams, and class diagrams). Then extracts the required
information from these documents to compute the requirement metrics
automatically.

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1491
ISSN 2229-5518

2. ltis possible to predict the CM (Code Model) from the RM (Requirement Model)
that are extracted from the requirement engineering document during the first
stage in the software life-cycle which is the requirement phase.

3. By measuring the code metrics based on requirement engineering documents, the
software programmers would have a complete picture of what the system would
be before the coding process; that would help them to work with no ambiguity.

4. Another benefits gained from measuring the code metrics at early stages of
software development are saving time and reducing cost hence the system is fully
understood and estimated earlier in the requirement phase.

5. The errors could be reduced where the system is anticipated at the requirement
phase.

6. The proposed software measurement tool is capable of computing the code
metrics (WMC, DIT, and CS) of a tested system source code in order to determine
complexity and size of that system.

7. The proposed system stores the requirement information and the code measures in
a data-base so all the tested systems are fully documented.

8. The proposed Requirement Model (RM) and Code Model (CM) have been
computed for all the case studies, the results showed that the RM and CM are
approximately equal and the relative error between the two models is
insignificant, so it is proved that the proposed RM is capable of estimating the
CM at the requirement phase of the software life-cycle.

Table (13) the Requirement Metrics for the Ten Case Studies
Case Study UCP OoP FSM Number of requiremen
Classes

Materialized View 20.5205 55 18 3
Al-lbdaa for car spare parts 16.641 31 10 12
Electronic Signature 43.3895 28 25 3
Wav Visualizer 16.3438 19 8 8
Central Repository 20.4771 51 15 3
Image Finder 7.3232 20 5 2
Almasal 18.5535 | 44 3 5
Engineering Time, Cost Estimation 11.9414 65 3 7
ToDo List 10.8173 | 13 4 2
Group Paint 7.777 10 3 2

Table (14) The Results of the case studies and the Error Measurement

No. Case Study RM CM Relative error
1 Materialized View 93.5205 | 114 0.1796%
2 Al-Ibdaa for cars spear parts 57.641 | 67 0.1396%
3 Electronic Signature 96.3895 | 93 0.0364%
4 Wav Visualizer 43.3438 | 53 0.1821%
5 Central Repository 86.4771 | 89 0.0283%
6 Image Finder 32.3232 | 41 0.2116%
7 Almassal 65.5535 | 65 0.0085%

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1492
ISSN 2229-5518

8

Engineering time, Cost estimation

79.9414

91

0.1215%

9

ToDo List

27.8173

25

0.1126%

10

Group Paint

20.77

21

0.0109%

Average

60.3777

65.9

65.9

Case Studies:
1. Materialized View
2. Al-lbdaa

80

8«) ‘5

*3

3. Electronic Signature
4 Wav Visualizer

5. Central Repository
6. Image Finder

7. Almasal

8. Engineering time
* 9 ToDo List

10. Group Paint

M
[}
=]

]

de

40 57}

20 g
10

Case Study
(RM,CHK)
Linear (CM)

a 20 40 60 80 100 120
RM

Figure (27) the Scatter Diagram for all the case studies

12 References

[BS04] K.Barclay and J. Savage, “Object-Oriented Design with UML and Java™, Elsevier, 2004.
[Che09] Murali Chemuturi, “Software Estimation Best Practice, Tools & Techniques, A
complete Guide for Software Project Estimators™, J. Ross, 20009.

[CK94] Shyam R. Chidamber and Chris F. Kemerer, “A Metrics Suite for Object Oriented Design”,
IEEE Transactions on Software Engineering, Vol. 20, NO. 6, 1994,

[Coc]“COCOMO Il Model Definition Manual’, version 1.4, University of Southern California.
[Cos09] “The COSMIC Functional Size Measurement Method”’, Measurement Manual v 3.0.1, 2009.
[FAP12] Nelly Condori-Fernandez, Silvia Abrahao, and Oscar Pastor, “Towards a Functional Size
Measure for Object-Oriented Systems from Requirements Specification™, IEEE, 2012.

[GL96] Gene H. Golub, and Charles F. Van Loan, “Matrix Computations™, Johns Hopkins Studies
in Mathematical Sciences, 3" Edition, 1996.

[Jal97] Pankaj Jalote, ““An Integrated Approach to Software Engineering’, second edition, Springer,
1997.

[JamO06] Seyyed Mohsen Jamali, “Object Oriented Metrics (A Survey Approach)”, 2006.

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1493
ISSN 2229-5518

[JS04] Jubair J. Al-Ja’afer and Khair Eddin M. Sabri, “Chidamber-Kemerer (CK) and Lorenz and
Kidd (LK) Metrics to Assess Java Programs’, 2004,

[Kan04] Cem Kaner, “Software Engineering Metrics: What Do We Measure and How Do We
Know”, IEEE, 10™ International Software Metrics Symposium, 2004.

[Ken09] Simon Kendal, “Object-Oriented Programming Using Java”, Ventus Publising Aps, 2009.
[Kar93] Gustav Karner, “Resource Estimation for Objectory Projects™, 1993.

[KKB08] Ananya Kankilal, Goutam Kanjilal, and Swapan Bhattacharya, “Metrics-based Analysis
of Requirements for Object-Oriented Systems: An Emperical Approach”, 2008.

[KR10] Linda Kenneth and Helda Rogardt, ““On the Relationship between Functional Size and
Software Code Size”, ACM, 2010.

[LK94] Mark Lorenz and Jeff Kidd, “Object-Oriented Software Metrics””, PTR Prentice Hall, 1994,
[LLO5] Timothy C. Lethbridge and Robert Laganiere, “Object-Oriented Software Engineering
Practical Software Development Using UML and Java”, 2" Edition, Mc Graw Hill, 2005.

[LR10] Luigi Lavazza and Gabriella Robiolo, “Introducing the Evaluation of Complexity in
Functional Size Measurement: a UML-based Approach™, ACM, 2010.

[NTO5] Iftikhar Azim Niaz and Jiro Tanaka, “An Object-Oriented Approach to Generate Java Code
from UML Statecharts™, International Journal of Computer & Information Science, VVol.6, No.2, June
2005.

[Prel0] Roger S. Pressman, ““Software Engineering, A Practitioner’s Approach’, Seventh edition,
McGraw-Hill Companies, 2010.

[RRR12] Dr.GSVP Raju, K.Koteswara Rao, and M Sumender Roy, “A Case Study Approach to
Measure the Function Points from the Points of Relationships of UML”, International Journal of
Computer Applications, Volume 10, No. 10, 2012.

[SK0510] Ashish Sharma and D.S. Kushwaha, “A Complexity Measure Based on Requirement
Engineering Document”, journal of computer science and engineering, volume 1, issue 1, May 2010.
[SK11] Ashish Sharma and Dharmender Singh Kushwaha, “A Metric Suite for Early Estimation of
Software Testing Effort Using Requirement Engineering Document and its Validation”, International
Conference of Computer & Communication Technology (ICCCT) 2011.

[SS12] Dami"ao N. da Silva and Chris Skinner, “Adjusting for Survey Measurement Error with
Accuracy Variables”, JSM, 2012

Appendix
Table (15) Code metrics for the Materialized View Case Study
Class Name DIT WMC CS
Forml 0 160 23
Acess2007_db_connection 1 7 9
R_Data_Structures 1 105 37
Total 2 272 69

Table (16) Code metrics for Al Ibda’a for Car Spare Parts Case Study

Class Name DIT WMC CS
billform 0 51 16
billsrecords 0 109 32
brand 0 16 0
carbrand 0 16 7
customers 0 59 20
customer _list 0 11 5
forml 0 30 15
items 0 111 27

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013

ISSN 2229-5518

Table (17) Code metrics for the Electronic Signature Case Study

Table (22) Code metrics for Engineering Time, Cost Estimation Case Study

printing 0 17 8
qq 0 31 11

reseat_bill 0 26 9
storage 0 145 36
Total 0 622 186

T

Class Name DIT WMC CS
WebCam 1 12 8
R_Data_Structures 1 105 37
Ramy Protocol 2 87 28
Total 4 204 73
Table (18) Code metrics for Wav Visualizer Case Study
Class Name DIT WMC CS
AudioFrame 0 17 11
FifoStream 0 28 18
R_Data_Structures 2 105 37
WavelnBuffer 2 14 15
WavelnRecorder 2 28 16
WaveOutBuffer 4 14 15
WaveOutPlayer 4 26 16
Total 14 232 128
able (19) Code metrics for Central Repository Case Study
Class Name DIT WMC CS
Forml 0 76 31
access2007 _db_connection 1 7 9
R_Data_Structures 1 105 37
Total 2 188 77

Table (20) Code metrics for Image Finder Case Study

Class Name DIT WMC CS
Forml 0 43 13
login 0 20 6
Total 0 63 19
Table (21) Code metrics for Almasal Case Study
Class Name DIT WMC CS
Forml 0 92 38
Form?2 0 41 19
Form3 0 56 22
Form4 0 29 14
Formb 0 13 5
Total 0 231 98

Class Name

DIT

WMC

CS

Forml

0

233

75

IJSER © 2013
http://www.ijser.org

1494

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 11, November-2013 1495
ISSN 2229-5518

MyL istBoxltem 1 1 2
Form2 0 103 33
Form3 0 259 89
Form4 0 10 4
Formb 0 20 9
Formo6 0 12 4
Total 1 638 216

Table (23) Code metrics for ToDo List Case Study

Class Name DIT WMC CS
Forml 0 28 9
Form2 0 9 4

Total 0 37 13

Table (24) Code metrics for Group Paint Case Study

Class Name DIT WMC CS
Program 0 1 1
ramy 0 9 4
Total 0 30 10

oaldiunl)

M8 sasa o Sl Gl LA 08 duna) Al 82 pn apil syl plica 8 (o uplial) 200
Ulay Gonlial) Lialad | ae yll aUaill Alps s Jasdi ¢ o shat llae s ccldlaial) won A dadiie Ala ya & <) il
Ao g e 48y jlay alaill a8 idelusi 5 duailad 5 oLl

Ladia Gl 0 e il cildbiall Guglie aladiuliima sl 5,080 Galie gl (e WS Caadl 1
CJ}AJ}AJMM)J\&.}M\UAMMWL\WDJUAJ}AJUAJSJJSJM\JJuYBD}ALdJMFJS g_a\.\.Ua.\A.“
M}M\Mﬂuhhﬂ\&&}&&\J@\Wﬂ\o}d\cawﬁjwﬂ\o}d\u»uud);yuuw\
rﬁ;_mha.\.“wo\.)\ u.u);qu\JY\ oA U}S.u ‘A\A).\S.AM M;A).J\ u,u_\s.“ o\.)\ e\mh L\S.\.\LA}.\J‘ g_ah\.u.“ Y C“;‘L‘L“‘r“"‘
A_\M).\j‘ b)ﬁuj\ u.u.\.\LS.A o\.)\) oh}d\

Ol nnl Ul (e alaindy L) o5 @l y dma 50l 3 pat s llbiall 3 e i o S i) il
Q5 5 el g el 8l 5553 (m Aniall Jalsall (8 ma pl) 8)i aplia olad il e S i 5 (el
gl 5 Aalsill 5 sgall 5 <

IJSER © 2013
http://www.ijser.org

http://www.ijser.org/

